Featured Research

from universities, journals, and other organizations

Predicting oil changes in industrial applications without interrupting operations

Date:
March 27, 2014
Source:
Saarland University
Summary:
Predictive maintenance of hard-to-access plants, no unnecessary oil changes, no unnecessary laboratory costs and less environmental impact: these are just some of the benefits offered by a new system that can monitor the condition of lubricating oils, hydraulic oils and other fluids in industrial installations without interrupting ongoing operations.

Predictive maintenance of hard-to-access plants, no unnecessary oil changes, no unnecessary laboratory costs and less environmental impact. These are just some of the benefits offered by a new system that can monitor the condition of lubricating oils, hydraulic oils and other fluids in industrial installations without interrupting ongoing operations. The method was developed by engineers from Saarbrücken in collaboration with project partners. The compact sensor system is available as a portable unit or can be built into industrial plants, wind turbines and other machinery. The system, which uses optical methods to measure the oil's chemical makeup and the degree of particle loading, can also predict the best time for an oil change.

Related Articles


The team of engineers led by Professor Andreas Schütze from Saarland University and ZeMA, the Centre for Mechatronics and Automation Technology in Saarbrücken, will be showcasing their work from April 7th to April 11th at the Saarland Research and Innovation Stand at HANNOVER MESSE.

Failing to change the oil at the right time can cause serious damage to machinery and equipment. A fact that is just as true for cars as it is for large industrial installations. Over time, a lubricating oil used to minimize friction, reduce wear and prevent overheating will become contaminated with fine metal dust and particles from abrasive processes. The oil will also gradually oxidize. And the additives that help to optimize the oil's properties also have only a finite lifetime. At some point, the oil will no longer be able to act as an effective lubricant. According to Professor Andreas Schütze, the key problem is that it is not obvious when exactly the oil needs changing. In the case of plants or installations that are difficult to reach -- such as offshore wind turbines -- the method adopted up to now has been either to take oil samples and have them examined in costly laboratory analyses or to simply change the oil at some regular interval. "As a result, a great deal of effort is expended in changing oil that is still actually useable, which is costly for both the operator and the environment," explains Professor Schütze.

In collaboration with partners from other universities and industry, Schütze's team at the Lab for Measurement Technology and at ZeMA have developed a measurement system that can be integrated directly into industrial installations where it continuously measures and monitors oil ageing and degradation while the installation continues to operate. The data from the measurement system are currently transmitted by mobile radio communication so that analysis and assessment can be performed off-site. A portable version of the system also exists. At HANNOVER MESSE, the engineers will be exhibiting a small case that contains all the equipment needed (from the measuring cell to the display unit) for on-site testing of the oil's quality. "Our system allows us to identify and avert potential damage early on. We can predict when maintenance work will be needed and plant operators can plan accordingly," explains Schütze. The method is also suitable for use with hydraulic systems. And the measurement system can test not only oils, but can also be used to monitor the condition of other fluids.

The methods developed by the engineers in Saarbrücken involve shining light into the liquid being monitored. In one case, light from a laser diode is scattered by any particles present in the oil or fluid. "Each different type of particle scatters the light in a particular way, causing more or less light to be measured in the various spatial directions. The scattered light is then recorded by photodiodes and the signals analysed. The system allows us to distinguish between metal dust, other solid particles and air bubbles and to determine the concentration of each," explains engineer Eliseo Pignanelli, who has been involved in refining the system. The second optical technique measures the absorption of infrared light by the fluid at specific wavelengths as it flows through the measurement system. "This permits us to draw conclusions about the chemical state of the oil, because chemical changes to the oil will cause changes in the light spectrum that we record," says Pignanelli. This spectroscopic analysis also enables the presence of water in the oil to be detected.

The team of engineers at Saarbrücken have been developing the system in a number of research projects, including the "FluidSens" and "NaMiFlu" projects that are collaborative efforts involving partners from academic institutions and from industry. Industrial partners include HYDAC Electronic GmbH in Gersweiler and EADS Deutschland GmbH (Innovation Works). One of the main areas of research concerned optimizing the optical and mechanical properties of the nanostructured layers used in the microsensors and adapting them for use at high pressures. Working with ZeMA in Saarbrücken, the technology is now being developed into a market-ready product.


Story Source:

The above story is based on materials provided by Saarland University. Note: Materials may be edited for content and length.


Cite This Page:

Saarland University. "Predicting oil changes in industrial applications without interrupting operations." ScienceDaily. ScienceDaily, 27 March 2014. <www.sciencedaily.com/releases/2014/03/140327101407.htm>.
Saarland University. (2014, March 27). Predicting oil changes in industrial applications without interrupting operations. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/03/140327101407.htm
Saarland University. "Predicting oil changes in industrial applications without interrupting operations." ScienceDaily. www.sciencedaily.com/releases/2014/03/140327101407.htm (accessed October 24, 2014).

Share This



More Science & Society News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Science & Society

Business & Industry

Education & Learning

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins