Featured Research

from universities, journals, and other organizations

Breakthrough in creating invisibility cloaks, stealth technology

Date:
March 31, 2014
Source:
University of Central Florida
Summary:
Scientists have managed to create artificial nanostructures called metamaterials that can 'bend light.' But the challenge has been making enough of the material to turn invisibility cloaks into a practical reality. New research, however, may have just cracked that barrier.

ontrolling and bending light around an object so it appears invisible to the naked eye is the theory behind fictional invisibility cloaks.
Credit: Image courtesy of University of Central Florida

Controlling and bending light around an object so it appears invisible to the naked eye is the theory behind fictional invisibility cloaks.

Related Articles


It may seem easy in Hollywood movies, but is hard to create in real life because no material in nature has the properties necessary to bend light in such a way. Scientists have managed to create artificial nanostructures that can do the job, called metamaterials. But the challenge has been making enough of the material to turn science fiction into a practical reality.

The work of Debashis Chanda at the University of Central Florida, however, may have just cracked that barrier. The cover story in the March edition of the journal Advanced Optical Materials, explains how Chanda and fellow optical and nanotech experts were able to develop a larger swath of multilayer 3-D metamaterial operating in the visible spectral range. They accomplished this feat by using nanotransfer printing, which can potentially be engineered to modify surrounding refractive index needed for controlling propagation of light.

"Such large-area fabrication of metamaterials following a simple printing technique will enable realization of novel devices based on engineered optical responses at the nanoscale," said Chanda, an assistant professor at UCF.

The nanotransfer printing technique creates metal/dielectric composite films, which are stacked together in a 3-D architecture with nanoscale patterns for operation in the visible spectral range. Control of electromagnetic resonances over the 3-D space by structural manipulation allows precise control over propagation of light. Following this technique, larger pieces of this special material can be created, which were previously limited to micron-scale size.

By improving the technique, the team hopes to be able to create larger pieces of the material with engineered optical properties, which would make it practical to produce for real-life device applications. For example, the team could develop large-area metamaterial absorbers, which would enable fighter jets to remain invisible from detection systems.


Story Source:

The above story is based on materials provided by University of Central Florida. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li Gao, Youngmin Kim, Abraham Vazquez-Guardado, Kazuki Shigeta, Steven Hartanto, Daniel Franklin, Christopher J. Progler, Gregory R. Bogart, John A. Rogers, Debashis Chanda. Negative Index Materials: Materials Selections and Growth Conditions for Large-Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing. Advanced Optical Materials, 2014; 2 (3): 255 DOI: 10.1002/adom.201470019

Cite This Page:

University of Central Florida. "Breakthrough in creating invisibility cloaks, stealth technology." ScienceDaily. ScienceDaily, 31 March 2014. <www.sciencedaily.com/releases/2014/03/140331114430.htm>.
University of Central Florida. (2014, March 31). Breakthrough in creating invisibility cloaks, stealth technology. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2014/03/140331114430.htm
University of Central Florida. "Breakthrough in creating invisibility cloaks, stealth technology." ScienceDaily. www.sciencedaily.com/releases/2014/03/140331114430.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cablevision Enters Wi-Fi Phone Fray

Cablevision Enters Wi-Fi Phone Fray

Reuters - Business Video Online (Jan. 26, 2015) The entry by Cablevision and Google could intensify the already heated price wars for mobile phone service. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Hector the Robot Mimics a Giant Stick Insect

Hector the Robot Mimics a Giant Stick Insect

Reuters - Innovations Video Online (Jan. 26, 2015) A robot based on a stick insect can navigate difficult terrain autonomously and adapt to its surroundings. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Obama's Wildlife Plan Renews Alaska Drilling Debate

Obama's Wildlife Plan Renews Alaska Drilling Debate

Newsy (Jan. 26, 2015) President Obama&apos;s proposal aims to protect more land in the Arctic National Wildlife Refuge, but so far, all that&apos;s materialized is a war of words. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins