Featured Research

from universities, journals, and other organizations

Breakthrough in creating invisibility cloaks, stealth technology

Date:
March 31, 2014
Source:
University of Central Florida
Summary:
Scientists have managed to create artificial nanostructures called metamaterials that can 'bend light.' But the challenge has been making enough of the material to turn invisibility cloaks into a practical reality. New research, however, may have just cracked that barrier.

ontrolling and bending light around an object so it appears invisible to the naked eye is the theory behind fictional invisibility cloaks.
Credit: Image courtesy of University of Central Florida

Controlling and bending light around an object so it appears invisible to the naked eye is the theory behind fictional invisibility cloaks.

It may seem easy in Hollywood movies, but is hard to create in real life because no material in nature has the properties necessary to bend light in such a way. Scientists have managed to create artificial nanostructures that can do the job, called metamaterials. But the challenge has been making enough of the material to turn science fiction into a practical reality.

The work of Debashis Chanda at the University of Central Florida, however, may have just cracked that barrier. The cover story in the March edition of the journal Advanced Optical Materials, explains how Chanda and fellow optical and nanotech experts were able to develop a larger swath of multilayer 3-D metamaterial operating in the visible spectral range. They accomplished this feat by using nanotransfer printing, which can potentially be engineered to modify surrounding refractive index needed for controlling propagation of light.

"Such large-area fabrication of metamaterials following a simple printing technique will enable realization of novel devices based on engineered optical responses at the nanoscale," said Chanda, an assistant professor at UCF.

The nanotransfer printing technique creates metal/dielectric composite films, which are stacked together in a 3-D architecture with nanoscale patterns for operation in the visible spectral range. Control of electromagnetic resonances over the 3-D space by structural manipulation allows precise control over propagation of light. Following this technique, larger pieces of this special material can be created, which were previously limited to micron-scale size.

By improving the technique, the team hopes to be able to create larger pieces of the material with engineered optical properties, which would make it practical to produce for real-life device applications. For example, the team could develop large-area metamaterial absorbers, which would enable fighter jets to remain invisible from detection systems.


Story Source:

The above story is based on materials provided by University of Central Florida. Note: Materials may be edited for content and length.


Journal Reference:

  1. Li Gao, Youngmin Kim, Abraham Vazquez-Guardado, Kazuki Shigeta, Steven Hartanto, Daniel Franklin, Christopher J. Progler, Gregory R. Bogart, John A. Rogers, Debashis Chanda. Negative Index Materials: Materials Selections and Growth Conditions for Large-Area, Multilayered, Visible Negative Index Metamaterials Formed by Nanotransfer Printing. Advanced Optical Materials, 2014; 2 (3): 255 DOI: 10.1002/adom.201470019

Cite This Page:

University of Central Florida. "Breakthrough in creating invisibility cloaks, stealth technology." ScienceDaily. ScienceDaily, 31 March 2014. <www.sciencedaily.com/releases/2014/03/140331114430.htm>.
University of Central Florida. (2014, March 31). Breakthrough in creating invisibility cloaks, stealth technology. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/03/140331114430.htm
University of Central Florida. "Breakthrough in creating invisibility cloaks, stealth technology." ScienceDaily. www.sciencedaily.com/releases/2014/03/140331114430.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins