Featured Research

from universities, journals, and other organizations

New study casts doubt on heart regeneration in mammals

Date:
April 3, 2014
Source:
Cell Press
Summary:
The mammalian heart has generally been considered to lack the ability to repair itself after injury, but a 2011 study in newborn mice challenged this view, providing evidence for complete regeneration after resection of 10 percent of the apex, the lowest part of the heart. In a new study researchers attempted to replicate these recent findings but failed to uncover any evidence of complete heart regeneration in newborn mice that underwent apex resection.

The resected area is still missing and scarformation (red) is seen in the border of the resection line. Red: Non-muscle myosin, green: Desmin, blue: Dapi.
Credit: Stem Cell Reports, Andersen et al.

The mammalian heart has generally been considered to lack the ability to repair itself after injury, but a 2011 study in newborn mice challenged this view, providing evidence for complete regeneration after resection of 10% of the apex, the lowest part of the heart. In a study published by Cell Press in Stem Cell Reports on April 3, 2014, researchers attempted to replicate these recent findings but failed to uncover any evidence of complete heart regeneration in newborn mice that underwent apex resection.

Related Articles


"Our results question the usefulness of the apex resection model for identifying molecular mechanisms underlying heart regeneration after damage and underscore the need for the scientific community to firmly establish whether or not the mammalian heart is capable of regeneration," says lead study author Ditte Andersen of Odense University Hospital and the University of Southern Denmark.

Cardiovascular disease is currently one of the leading causes of death worldwide, and scientists have mainly attributed this high mortality rate to the inability of the mammalian heart to regenerate after injury. Novel therapies capable of enhancing the heart's ability to recover after a heart attack or other type of injury are urgently needed. That's why a 2011 Science report from Porrello et al. that provided evidence of complete heart regeneration in newborn mice attracted a great deal of attention and raised hopes for identifying factors that could improve heart regeneration.

This study prompted Andersen, Søren Sheikh, and their colleagues to look for factors that enable heart regeneration, but they were surprised to find no signs of true heart regeneration in newborn mice that underwent apex resection. Three weeks after this procedure, the damaged hearts were about 10% shorter and weighed 14% less than the hearts of control mice that underwent the same surgical procedure without apex resection. Moreover, the damaged hearts had large scars and lacked proliferating muscle cells crucial for restoring heart function.

"The notion of mammalian heart regeneration has given a lot of hope in the scientific community for finding important factors that may be used for improving adult heart regeneration," Andersen says. "We hope that our study will add another view on this important matter and spur a lot of studies from other independent labs that may shed further light on this controversial area of research."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ditte Caroline Andersen, Suganya Ganesalingam, Charlotte Harken Jensen, Søren Paludan Sheikh. Do Neonatal Mouse Hearts Regenerate following Heart Apex Resection? Stem Cell Reports, 2014; DOI: 10.1016/j.stemcr.2014.02.008

Cite This Page:

Cell Press. "New study casts doubt on heart regeneration in mammals." ScienceDaily. ScienceDaily, 3 April 2014. <www.sciencedaily.com/releases/2014/04/140403132205.htm>.
Cell Press. (2014, April 3). New study casts doubt on heart regeneration in mammals. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/04/140403132205.htm
Cell Press. "New study casts doubt on heart regeneration in mammals." ScienceDaily. www.sciencedaily.com/releases/2014/04/140403132205.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins