Featured Research

from universities, journals, and other organizations

At long last: Concrete that's nearly maintenance-free

Date:
April 9, 2014
Source:
University of Wisconsin-Milwaukee
Summary:
A cement composite that is durable, water-resistant and malleable has been created by engineers. It has such a high level of “crack control” that the researchers estimate it has a service life of 120 years or more. To compare, the average life span of concrete roads falls in the 40-50-year range, with up to 10 percent of reinforced bridge decks needing replacement after 30 years.

Engineering students put another layer of the concrete composite over the sensors. Students were patching a large crack in the driveway of a UWM parking lot with the product from funded research in Sobolev's lab.
Credit: Image courtesy of University of Wisconsin-Milwaukee

To Scott Muzenski, the large crack that weather and wear had caused in the driveway of a parking structure at the University of Wisconsin-Milwaukee (UWM) presented an opportunity to test his research.

Muzenski, a civil engineering graduate student, had been working on a new kind of high-performance concrete created in the lab of associate professor Konstantin Sobolev. Their cement composite is a durable, water-resistant and malleable paving material with such a high level of "crack control" that the researchers estimate it has a service life of 120 years or more.

To compare, the average life span of concrete roads in Wisconsin falls in the 40-50-year range, with up to 10 percent of reinforced bridge decks needing replacement after 30 years.

In August, a crew of 25 students joined Muzenski in patching the driveway using the unique material. Then, in order to track whether the material was indeed holding up better than ordinary concrete, they gave the 4-by-15-foot slab the ability to monitor its own performance.

About an inch below the surface, the students embedded electrodes in this 'smart' concrete that are linked to a data acquisition system located behind an adjacent retaining wall. "This is going to tell us whether water is getting into the material and how deep it goes," says Muzenski. "It also detects the presence of chloride ions within the material, and senses load and stress as vehicles pass over it."

Later this year when the software is completed, the real-time data will be fed wirelessly to an online repository.

We'll be able to observe the performance of concrete as it happens, in real time" says Sobolev.

The slab project will confirm two important features of this hybrid concrete, called a Superhydrophobic Engineered Cementitious Composite (SECC): its superior durability and its "smart" capability.

The science of cracks

The researchers point to two reasons they believe their SECC is a superior material. First, it contains compounds that make the material nearly waterproof.

As Sobolev squeezes an eyedropper of water over a small piece of the hybrid concrete, the liquid beads up on contact into almost perfect spheres that rush off the hard surface at the smallest tilt.

Normally, water pools on the surface of pavement and permeates through cracks. Add freezing and thawing cycles, and it's no wonder that roadways are in need of frequent repair, says Sobolev.

Additives in the hybrid change the concrete on a molecular level when the pavement hardens, creating a spiky surface that, although microscopic, causes the water to bead and roll off.

The second innovation of this SECC allows the material to bend without breaking. Although some examples of a malleable concrete are currently commercially available, Sobolev's lab has improved ductility with their composite. Super-strong unwoven polyvinyl alcohol fibers, each the width of a human hair, are mixed into and bond with the concrete. When cracks begin, the fibers keep them from becoming larger tears.

In fact, the aim of Sobolev's material is not to minimize cracking. Instead, it's designed to allow multiple micro-cracking, which distributes the load across many tiny cracks that are too small to let water penetrate.

Conventional reinforced concrete, in contrast, is relatively brittle, and cracks get progressively worse with the constant loading. When that happens, the entire stress is transferred to the reinforcing steel that bridges the crack.

"Our architecture allows the material to withstand four times the compression with 200 times the ductility of traditional concrete," says Sobolev.

A targeted use

Since ductile concrete is more expensive than regular concrete, he sees its best application in specific places where deterioration begins, such as on bridge approach decks. That's where concrete that is heavily reinforced meets regular asphalt. The joint, says Sobolev, cannot withstand the continuous loading.

"The bridge and the road aren't designed to work together," he says. "You need something between them that has the durability to handle the stress."

He adds that the cost of his SECC is drastically offset by the reduction in labor costs for maintenance and early repairs.

The current construction on Milwaukee's Hoan Bridge, for example, includes replacement of just such a bridge deck that will cost millions to make the bridge safe for another 50 years.

In addition to his high-performance concrete, Sobolev also sees a promising future for "smart" concrete, with uses beyond transportation. Remote monitoring at facilities such as nuclear power plants allows problems to be detected while limiting the risk of harm to employees.


Story Source:

The above story is based on materials provided by University of Wisconsin-Milwaukee. The original article was written by Laura L. Hunt. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Milwaukee. "At long last: Concrete that's nearly maintenance-free." ScienceDaily. ScienceDaily, 9 April 2014. <www.sciencedaily.com/releases/2014/04/140409134323.htm>.
University of Wisconsin-Milwaukee. (2014, April 9). At long last: Concrete that's nearly maintenance-free. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/04/140409134323.htm
University of Wisconsin-Milwaukee. "At long last: Concrete that's nearly maintenance-free." ScienceDaily. www.sciencedaily.com/releases/2014/04/140409134323.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins