Featured Research

from universities, journals, and other organizations

Identifying the complex growth process of strontium titanate thin films

Date:
April 16, 2014
Source:
National Institute for Materials Science
Summary:
Researchers in Japan have achieved the first successful atomic-level observation of growing strontium titanate thin films.

(Left) Scanning tunneling microscopy image of 0.3 unit-cell SrTiO3 thin film (15 nm 15 nm). Atomic arrangement is clearly observed to be identical between the SrTiO3 thin film (purple) and the SrTiO3 substrate underneath (blue). (Right) A growth model illustrating the formation of SrTiO3 thin film. The TiO2 layer present on the surface of the SrTiO2 substrate is transferred to the surface of the thin film.
Credit: Copyright National Institute for Materials Science (NIMS)

Researchers at Japan's National Institute for Materials Science (NIMS) and Advanced Institute for Materials Research (AIMR) have achieved the first successful atomic-level observation of growing strontium titanate thin films.

Led by Assistant Professor Takeo Ohsawa of NIMS and Associate Professor Taro Hitosugi of Tohoku University's AIMR, a research team has developed a new advanced system, combining a super-resolution microscope and a deposition chamber for growing oxide thin films. With this system, they successfully observed for the first time the growing metal-oxide thin films at an atomic level on the surface of single-crystal strontium titanate (SrTiO3). Based on these observations, they identified the mechanism involved in the growth of the thin films in which titanium atoms rose to the surface of the film.

Metal oxides, including perovskite-type oxides such as SrTiO3, are commonly used due to their diverse properties, which include superconductivity, ferromagnetism, ferroelectricity and catalytic effect. In recent years, novel properties generated at the interface between two dissimilar oxides have been vigorously investigated. However, little is known about the mechanism involved in the formation of such interfaces. Understanding this mechanism is key to further research advances in this field.

The NIMS/AIMR research group developed an innovative system that combines a scanning tunneling microscope capable of identifying individual atoms with a pulsed laser deposition method that enables the growth of high-quality thin films. In addition, they also established a method for preparing a single-crystal SrTiO3 substrate on which atoms are arranged in a periodic pattern. Epitaxial thin films were grown on the surface of the substrates and the growth was observed with atomic-scale spatial resolution. In their observations, they found there was a great difference in the growth process when SrTiO3 and SrOx thin films were deposited on the surface of the substrates.

Furthermore, the team identified a phenomenon in which excess titanium atoms present on the surface of the SrTiO3 substrate rose to the surface of the thin film. These observations facilitated a clear atomic-scale understanding of the growth process regarding how oxide thin films are formed. These results may not only contribute to the understanding of the origin of interfacial properties but also lead to the creation of new electronics devices through the development of new functional materials.

This research was carried out as part of the Japan Science and Technology Agency's Strategic Basic Research Programs. The research will be published in the U.S.-based scientific journal ACS Nano in the near future.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryota Shimizu, Katsuya Iwaya, Takeo Ohsawa, Susumu Shiraki, Tetsuya Hasegawa, Tomihiro Hashizume, Taro Hitosugi. Atomic-Scale Visualization of Initial Growth of Homoepitaxial SrTiO3 Thin Film on an Atomically Ordered Substrate. ACS Nano, 2011; 5 (10): 7967 DOI: 10.1021/nn202477n

Cite This Page:

National Institute for Materials Science. "Identifying the complex growth process of strontium titanate thin films." ScienceDaily. ScienceDaily, 16 April 2014. <www.sciencedaily.com/releases/2014/04/140416172031.htm>.
National Institute for Materials Science. (2014, April 16). Identifying the complex growth process of strontium titanate thin films. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/04/140416172031.htm
National Institute for Materials Science. "Identifying the complex growth process of strontium titanate thin films." ScienceDaily. www.sciencedaily.com/releases/2014/04/140416172031.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins