Featured Research

from universities, journals, and other organizations

Impurity size affects performance of emerging superconductive material

Date:
April 18, 2014
Source:
North Carolina State University
Summary:
Impurities can hurt performance -- or possibly provide benefits -- in a key superconductive material that is expected to find use in a host of applications, including future particle colliders. The size of the impurities determines whether they help or hinder the material's performance, according to new research.

Focused ion beam image of a Bi2212 sample.
Credit: Golsa Naderi

Research from North Carolina State University finds that impurities can hurt performance -- or possibly provide benefits -- in a key superconductive material that is expected to find use in a host of applications, including future particle colliders. The size of the impurities determines whether they help or hinder the material's performance.

Related Articles


At issue is a superconductive material called bismuth strontium calcium copper oxide (Bi2212). A superconductor is a material that can carry electricity without any loss -- none of the energy is dissipated as heat, for example. Superconductive materials are currently used in medical MRI technology, and are expected to play a prominent role in emerging power technologies.

"Bi2212 is the only high-temperature superconductor that can be made as a round wire, and is expected to have applications in magnets for use in everything from magnetic resonance imaging technologies to the next generation of super colliders -- almost anything that falls under the category of high-energy physics or requires a very high magnetic field," says Golsa Naderi, a Ph.D. student at NC State and lead author of a paper describing the work.

To use Bi2212 for any of these potential applications, the material needs to be formed into a multifilamentary wire, which contains 500 to1,000 Bi2212 filaments embedded in silver, and then heat-treated to nearly 900 degrees C. However, this processing results in impurities in the material. These impurities largely consist of porosity and bismuth strontium copper oxide (Bi2201).

"We know that porosity, or the formation of voids in the Bi2212, is problematic. But we wanted to go beyond porosity and learn more about the Bi2201 impurities and how they could help or hurt Bi2212's performance," says Dr. Justin Schwartz, senior author of the paper and Kobe Steel Distinguished Professor and head of the Department of Materials Science and Engineering at NC State. "That would help us determine how to optimize the material's superconducting characteristics through better processing."

The researchers found that nanoscale impurities, from 1.2 to2.5 nanometers wide, appear to improve Bi2212's performance as a superconductor.

"The nanoscale impurities, or defects, serve as centers for 'pinning' magnetic flux in place," Naderi says. "Without those pinning centers, the magnetic vortices can move, creating resistivity and impeding superconductivity when a magnetic field is present.

"People want to use Bi2212 to create high magnetic fields using current, so pinning magnetic flux is essential -- technology using this material must be able to operate in the presence of a magnetic field," Naderi adds.

But the researchers also found that large-scale impurities, measured in microns (or micrometers), are detrimental to Bi2212's superconductivity. This is because these impurities are so large that they act as barriers to current, forcing electrons to change their paths and weakening the material's superconductivity.

"Our previous work had shown that large-scale Bi2201 defects were a significant problem for Bi2212 wires, and this work bears that out," Schwartz says. "But now we know that at the nanoscale, Bi2201 is not detrimental -- and may improve performance."

The researchers say that a key next step will be for materials engineers to reassess long-standing processing protocols for Bi2212 wires to determine how to minimize the formation of the large-scale impurities.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Naderi, J. Schwartz. On the roles of Bi2Sr2CuOx intergrowths in Bi2Sr2CaCu2Ox/Ag round wires: c-axis transport and magnetic flux pinning. Applied Physics Letters, 2014; 104 (15): 152602 DOI: 10.1063/1.4871805

Cite This Page:

North Carolina State University. "Impurity size affects performance of emerging superconductive material." ScienceDaily. ScienceDaily, 18 April 2014. <www.sciencedaily.com/releases/2014/04/140418141109.htm>.
North Carolina State University. (2014, April 18). Impurity size affects performance of emerging superconductive material. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/04/140418141109.htm
North Carolina State University. "Impurity size affects performance of emerging superconductive material." ScienceDaily. www.sciencedaily.com/releases/2014/04/140418141109.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins