Featured Research

from universities, journals, and other organizations

Finding safe drugs to treat neurodegenerative diseases

Date:
April 23, 2014
Source:
American Friends of Tel Aviv University
Summary:
'Mutant' protein clusters, long blamed for the progression of Huntington's and other neurodegenerative diseases, have been the primary focus of therapies in development by pharmaceutical companies. But according to new research, these drugs may not only be ineffective -- they may pose a serious threat to patients.

People diagnosed with Huntington's disease, most in their mid-thirties and forties, face a devastating prognosis: complete mental, physical, and behavioral decline within two decades. "Mutant" protein clusters, long blamed for the progression of the genetic disease, have been the primary focus of therapies in development by pharmaceutical companies. But according to new research from Prof. Gerardo Lederkremer and Dr. Julia Leitman of Tel Aviv University's Department of Cell Research and Immunology, in collaboration with Prof. Ulrich Hartl of the Max Planck Institute for Biochemistry, these drugs may not only be ineffective -- they may pose a serious threat to patients.

Related Articles


In two ground-breaking studies, published in the journals PLOS ONE and Nature Communications, Prof. Lederkremer and his team demonstrated that protein clusters are not the cause of toxicity in Huntington's disease. On the contrary, these aggregates actually serve as a defense mechanism for "stressed" brain cells. Conducted on tissue cultures using cutting-edge microscopic technology, their studies identified a different causative agent -- the "stress response" of affected brain cells.

"The upsetting implication for therapy of this disease is that drugs being developed to interfere with the formation of protein aggregates may in fact be detrimental," said Prof. Lederkremer. "The identification of the new cause will hopefully lead to the development of new therapeutic approaches. This may hold true for other neurodegenerative diseases as well."

Starting from genetic scratch

Prof. Lederkremer and his team chose to examine the effect of protein aggregates in the pathology of Huntington's disease because its genetic cause is well-known, unlike those of other neurodegenerative diseases, such as Parkinson's, whose origins remain less clear.

"What we found in this study -- a surprise, although we suspected it -- was that damage to the cells, the cell 'stress' that leads to death of cells, appeared well before the protein aggregates did," said Prof. Lederkremer. "And even more surprising, when the aggregates finally appeared, the stress was reduced, in some cases even stopping. The actual process of forming an aggregate was protective, isolating and segregating the problematic proteins. This explains why in autopsies of people who died of Huntington's and other diseases like Alzheimer's or old age, the protein aggregates in the brains were all quite similar, reflecting no specific disease link."

By interfering with the stress response of brain cells, rather than the formation of protein clusters, scientists may be able to slow, or even halt, the progression of neurodegenerative diseases. According to Prof. Lederkremer, this research paves the way for a revolutionary new direction for pharmaceutical research to treat Huntington's, Alzheimer's, Parkinson's, and other neurodegenerative diseases.

Response to stress

"The practical consequences are that several companies are already in advanced stages of development of drugs inhibiting this form of protein aggregate, interfering with the body's natural process to protect the brain," said Prof. Lederkremer. "But the drugs should be focused on another area altogether, and the protein aggregates, a protective resource for the brain, should be left intact."

Samples of brain cells from mouse models afflicted with Huntington's disease were examined using "live cell imaging," the study of live cells through time-lapse microscopy. Prof. Lederkremer and his team were thus able to identify a compound that modified brain cells' response to stress, promoting their survival.

"Our approach was to interfere with the stress response instead of the formation of the protein aggregates, and the lab succeeded in identifying a compound that altered the response, rescuing affected cells from death," said Prof. Lederkremer. "Our findings are most encouraging for the development of a therapy for this devastating disease, which is presently incurable."


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal References:

  1. Julia Leitman, Boaz Barak, Ron Benyair, Marina Shenkman, Uri Ashery, F. Ulrich Hartl, Gerardo Z. Lederkremer. ER Stress-Induced eIF2-alpha Phosphorylation Underlies Sensitivity of Striatal Neurons to Pathogenic Huntingtin. PLoS ONE, 2014; 9 (3): e90803 DOI: 10.1371/journal.pone.0090803
  2. Julia Leitman, F. Ulrich Hartl, Gerardo Z. Lederkremer. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3753

Cite This Page:

American Friends of Tel Aviv University. "Finding safe drugs to treat neurodegenerative diseases." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423143021.htm>.
American Friends of Tel Aviv University. (2014, April 23). Finding safe drugs to treat neurodegenerative diseases. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2014/04/140423143021.htm
American Friends of Tel Aviv University. "Finding safe drugs to treat neurodegenerative diseases." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423143021.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
100-Year-Old Woman Sees Ocean for First Time

100-Year-Old Woman Sees Ocean for First Time

AP (Nov. 20, 2014) Ruby Holt spent most of her 100 years on a farm in rural Tennessee, picking cotton and raising four children. She saw the ocean for the first time thanks to her assisted living center and a group that grants wishes to the elderly. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Kids React to Lammily, The Realistic Barbie Alternative

Kids React to Lammily, The Realistic Barbie Alternative

Buzz60 (Nov. 19, 2014) Artist Nickolay Lamm's Kickstarter-funded Lammily doll, based on his 'What Would Barbie Look Like as a Real Woman' project, is finally available to buy. Jen Markham explains how the doll's realistic proportions are going over with a test group of second-graders who are used to the impossible measurements of Barbie dolls. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins