Featured Research

from universities, journals, and other organizations

'Double-duty' electrolyte enables new chemistry for longer-lived batteries

Date:
April 24, 2014
Source:
DOE/Oak Ridge National Laboratory
Summary:
Researchers have developed a new and unconventional battery chemistry aimed at producing batteries that last longer than previously thought possible. Researchers have challenged a long-held assumption that a battery's three main components -- the positive cathode, negative anode and ion-conducting electrolyte -- can play only one role in the device.

When ORNL researchers incorporated a solid lithium thiophosphate electrolyte into a lithium-carbon fluoride battery, the device generated a 26 percent higher capacity than what would be its theoretical maximum if each component acted independently.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a new and unconventional battery chemistry aimed at producing batteries that last longer than previously thought possible.

In a study published in the Journal of the American Chemical Society, ORNL researchers challenged a long-held assumption that a battery's three main components -- the positive cathode, negative anode and ion-conducting electrolyte -- can play only one role in the device.

The electrolyte in the team's new battery design has dual functions: it serves not only as an ion conductor but also as a cathode supplement. This cooperative chemistry, enabled by the use of an ORNL-developed solid electrolyte, delivers an extra boost to the battery's capacity and extends the lifespan of the device.

"This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with unprecedented energy density," said ORNL's Chengdu Liang.

The team demonstrated the new concept in a lithium carbon fluoride battery, considered one of the best single-use batteries because of its high energy density, stability and long shelf life. When ORNL researchers incorporated a solid lithium thiophosphate electrolyte, the battery generated a 26 percent higher capacity than what would be its theoretical maximum if each component acted independently. The increase, explains Liang, is caused by the cooperative interactions between the electrolyte and cathode.

"As the battery discharges, it generates a lithium fluoride salt that further catalyzes the electrochemical activity of the electrolyte," Liang said. "This relationship converts the electrolyte -- conventionally an inactive component in capacity -- to an active one."

The improvement in capacity could translate into years or even decades of extra life, depending on how the battery is engineered and used. Longer-lived disposable batteries are in demand for applications such as such as artificial cardiac pacemakers, radiofrequency identification devices, remote keyless system, and sensors, where replacing or recharging a battery is not possible or desirable.

"If you have a pacemaker, you don't want to undergo surgery every 10 years to replace the battery," Liang said. "What if a battery could last 30 to 50 years? Our fundamental research is opening up that possibility through a new design mechanism."

The study is published as "Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte." Coauthors are ORNL's Ezhiylmurugan Rangasamy, Juchuan Li, Gayatri Sahu, Nancy Dudney and Chengdu Liang. The work was sponsored by the Division of Materials Sciences and Engineering in DOE's Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ezhiylmurugan Rangasamy, Juchuan Li, Gayatri Sahu, Nancy Dudney, Chengdu Liang. Pushing the Theoretical Limit of Li-CFxBatteries: A Tale of Bifunctional Electrolyte. Journal of the American Chemical Society, 2014; 140414163101007 DOI: 10.1021/ja5026358

Cite This Page:

DOE/Oak Ridge National Laboratory. "'Double-duty' electrolyte enables new chemistry for longer-lived batteries." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424113311.htm>.
DOE/Oak Ridge National Laboratory. (2014, April 24). 'Double-duty' electrolyte enables new chemistry for longer-lived batteries. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/04/140424113311.htm
DOE/Oak Ridge National Laboratory. "'Double-duty' electrolyte enables new chemistry for longer-lived batteries." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424113311.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins