Featured Research

from universities, journals, and other organizations

Computer program could help solve arson cases

Date:
April 24, 2014
Source:
University of Alberta
Summary:
Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but researchers teaming with police scientists have found a way to speed the process. A computer program can cut the need for extra levels of human analysis, reducing the waiting time to find out the cause of a deliberately set fire.

Sifting through the chemical clues left behind by arson is delicate, time-consuming work, but University of Alberta researchers teaming with RCMP scientists in Canada, have found a way to speed the process.

A computer program developed by University of Alberta chemistry professor James Harynuk, his team of graduate and undergraduate researchers and the Royal Canadian Mounted Police National Forensic Laboratory Services, can cut the need for extra levels of human analysis, reducing the waiting time to find out the cause of a deliberately set fire.

That means quicker turnaround on answers for fire investigators, said Mark Sandercock, manager of trace evidence program support for the RCMP's National Forensic Laboratory Services, and a co-author on the research.

"Having results back in a timely way on physical evidence can only improve an investigation," Sandercock said. "By getting the laboratory results back quickly, investigators can use this information to ask the right questions when interviewing people or evaluating other evidence, which will help them resolve the case more quickly by pointing them in the right direction."

The U of A study, published recently in Forensic Science International, is the first to use a mathematical model to successfully classify debris pulled from suspected arson scenes, going beyond research based solely on simulated debris.

Harynuk's team began working with the RCMP's forensic lab in 2008, looking to develop tools for interpreting chemical data. Arson investigation was a logical fit.

"Arson debris provides an interesting set of samples because it is uncontrolled," Harynuk said. "You never know what is going to be in the fire, or how it started. Paint thinners, gasoline, kerosene are all very complex mixtures, and we wanted to develop a tool that would be able to pick a complex signature out of an equally complex background."

Volatile compounds released in a fire can mask the vital chemical data that RCMP scientists need to pinpoint, Sandercock noted. "It can be like looking for a needle in a haystack."

Currently, an RCMP forensic scientist examines data from a sample, which is then re-examined by a second scientist to see whether they agree on the findings -- a process that can take hours per sample. The average arson investigation yields three or four samples.

The technology developed at the University of Alberta would allow the first scientist to run findings through the computer program, getting an answer in seconds. Only if the computer gave a result different from that of the scientist would the debris sample go to a second human analyst.

For their work, Harynuk and his team focused on gasoline, the most commonly used ignitable liquid in arsons. They analyzed data from 232 chemical samples provided by the RCMP's lab services, drawn from fire debris in cases under investigation across Canada. From chemical profiles taken from burned carpet, wood and cloth, they were able to develop a computer filter that isolated the signature of gasoline in the data. This signature was then used to indicate whether or not gasoline was present in the debris sample, a possible indicator of it being used to start a fire.

"It's a system that is quite accurate and goes down a similar investigative path that a human would when looking at the data," Harynuk said.


Story Source:

The above story is based on materials provided by University of Alberta. The original article was written by Bev Betkowski. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nikolai A. Sinkov, P. Mark L. Sandercock, James J. Harynuk. Chemometric classification of casework arson samples based on gasoline content. Forensic Science International, 2014; 235: 24 DOI: 10.1016/j.forsciint.2013.11.014

Cite This Page:

University of Alberta. "Computer program could help solve arson cases." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424170554.htm>.
University of Alberta. (2014, April 24). Computer program could help solve arson cases. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/04/140424170554.htm
University of Alberta. "Computer program could help solve arson cases." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424170554.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins