Featured Research

from universities, journals, and other organizations

Simplifying an ultrafast laser offers better control

Date:
May 14, 2014
Source:
INRS
Summary:
Scientists have developed a new concept offering a simpler laser design, control over new parameters, and excellent performance potential. Called 'frequency domain optical parametric amplification,' the concept supersedes traditional time domain amplification schemes that have been the linchpin of ultrafast laser science for 20 years.

Going back to the drawing board to find a way to overcome the technical limitations of their laser, a team led by François Légaré, professor at the INRS Énergie Matériaux Télécommunications Research Centre, developed a new concept offering a simpler laser design, control over new parameters, and excellent performance potential.
Credit: Image courtesy of INRS

Going back to the drawing board to find a way to overcome the technical limitations of their laser, a team led by François Légaré, professor at the INRS Énergie Matériaux Télécommunications Research Centre, developed a new concept offering a simpler laser design, control over new parameters, and excellent performance potential. Called "frequency domain optical parametric amplification" (FOPA), the concept supersedes traditional time domain amplification schemes that have been the linchpin of ultrafast laser science for 20 years. The new concept is explained in detail in an open access article in Nature Communications.

For researchers, capturing images of a moving electron is the holy grail of molecular imaging. But in their efforts to generate a light pulse that is sufficiently short and powerful to capture such an image, researchers have been held back by the fundamental limitations and unsatisfactory performance of lasers. "Our goal is to capture images of a chemical reaction using high spatial and temporal resolution," explained François Légaré, speaking at the TEDxConcordia event. "I want to shoot a video where you can actually see the atoms dancing in a chemical reaction."

Amplifying laser pulses in the frequency domain rather than the time domain also overcomes certain technical constraints, among them the ability to access multiple different frequencies simultaneously and control them independently. In addition, higher light pulse energy can be achieved with the new concept. "Our approach holds promise for high-power, broad spectrum, few-cycle laser sources," said the young researcher.

In the proof of concept presented in the Nature Communications article, Professor Légaré's team demonstrated that FOPA generates pulses comparable to lasers using time domain amplification in the given conditions: 1.5 mJ, 1.8 microns, 12 fs duration corresponding to 2 optical cycles. Research associate and lead author Bruno Schmidt points out that not only does the FOPA approach open up access to parameters that could not previously be controlled, it also eliminates many complex assembly components. "The logic underpinning this concept could be applied to other types of applications," he added, "so we believe it will allow us to look at nonlinear optics in a whole new light." Optimistic and ambitious, Bruno Schmidt plans to market the innovations stemming from his work, even founding his own company, few-cycle Inc.


Story Source:

The above story is based on materials provided by INRS. The original article was written by Stéphanie Thibault. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bruno E. Schmidt, Nicolas Thiré, Maxime Boivin, Antoine Laramée, François Poitras, Guy Lebrun, Tsuneyuki Ozaki, Heide Ibrahim, François Légaré. Frequency domain optical parametric amplification. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4643

Cite This Page:

INRS. "Simplifying an ultrafast laser offers better control." ScienceDaily. ScienceDaily, 14 May 2014. <www.sciencedaily.com/releases/2014/05/140514100314.htm>.
INRS. (2014, May 14). Simplifying an ultrafast laser offers better control. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2014/05/140514100314.htm
INRS. "Simplifying an ultrafast laser offers better control." ScienceDaily. www.sciencedaily.com/releases/2014/05/140514100314.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins