Featured Research

from universities, journals, and other organizations

Going beyond the surface: New tech could take light-based cancer treatment deep inside the body

Date:
May 15, 2014
Source:
University at Buffalo
Summary:
Photodynamic therapy (PDT) is an effective treatment for easily accessible tumors such as oral and skin cancer. But the procedure, which uses lasers to activate special drugs called photosensitizing agents, isn't adept at fighting cancer deep inside the body. Thankfully, that's changing due to new technology that could bring PDT into areas of the body which were previously inaccessible. The new tech involves using near-infrared beams of light that, upon penetrating deep into the body, are converted into visible light that activates the drug and destroys the tumor.

The laser irradiated area (the white square) shows live cancer cells (green) as well as dead cancer cells (red) as a result of the irradiation.
Credit: Image courtesy of University at Buffalo

Photodynamic therapy (PDT) is an effective treatment for easily accessible tumors such as oral and skin cancer.

Related Articles


But the procedure, which uses lasers to activate special drugs called photosensitizing agents, isn't adept at fighting cancer deep inside the body. Thankfully, that's changing due to new technology that could bring PDT into areas of the body which were previously inaccessible.

Described May 11 in the journal Nature Photonics, the approach involves using near-infrared beams of light that, upon penetrating deep into the body, are converted into visible light that activates the drug and destroys the tumor.

"We expect this will vastly expand the applications for an effective cancer phototherapy that's already in use," said co-author Tymish Ohulchanskyy, PhD, University at Buffalo research associate professor and deputy director for photomedicine at the university's Institute for Lasers, Photonics and Biophotonics (ILPB).

Doctors have used PDT to treat cancer for decades. Cancer cells absorb the drug, which is delivered to the tumor via the bloodstream or locally. Visible light is then applied to the site, which causes the drug to react with oxygen and create a burst of free radicals that kill the tumor.

Unfortunately, visible light does not penetrate tissue well. Conversely, near-infrared light penetrates tissue well but doesn't activate the drugs efficiently.

To solve this problem, some researchers are developing drugs that absorb near-infrared light. This method is limited, however, because stable and efficient near-infrared absorbing photosenzitizers are notoriously difficult to synthesize.

The UB-led team took a different approach, which uses the tumor's natural environment to tune the light into the necessary wavelengths.

For example, the near-infrared laser beam interacts with the natural protein collagen, which is found in connective tissues. The interaction changes the near-infrared light to visible light, a process known as second harmonic generation. Likewise, natural proteins and lipids within the cells interact with near-infrared laser light and change it to visible light through another process called four-wave mixing.

Thus, visible light can be generated in tumors deep inside the body, and it can be absorbed by the drug. This activates the drug, which then destroys the tumor.

The procedure has numerous advantages, said the study's leader, Paras Prasad, PhD, SUNY Distinguished Professor in chemistry, physics, electrical engineering, and medicine at UB, and the ILPB's executive director.

"There are no long-term side effects for PDT, it's less invasive than surgery, and we can very precisely target cancer cells," he said. "With our approach, PDT is enriched to provide another tool that doctors can use to alleviate the pain of millions of people suffering from cancer."

UB has applied for a patent to protect the team's discovery, and the university's Office of Science, Technology Transfer and Economic Outreach (UB STOR) is discussing potential license agreements with companies interested in commercializing it.


Story Source:

The above story is based on materials provided by University at Buffalo. The original article was written by Cory Nealon. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, P. N. Prasad. Photodynamic therapy by in situ nonlinear photon conversion. Nature Photonics, 2014; DOI: 10.1038/nphoton.2014.90

Cite This Page:

University at Buffalo. "Going beyond the surface: New tech could take light-based cancer treatment deep inside the body." ScienceDaily. ScienceDaily, 15 May 2014. <www.sciencedaily.com/releases/2014/05/140515142841.htm>.
University at Buffalo. (2014, May 15). Going beyond the surface: New tech could take light-based cancer treatment deep inside the body. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/05/140515142841.htm
University at Buffalo. "Going beyond the surface: New tech could take light-based cancer treatment deep inside the body." ScienceDaily. www.sciencedaily.com/releases/2014/05/140515142841.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins