Featured Research

from universities, journals, and other organizations

Key factor in early auditory system development discovered

Date:
May 20, 2014
Source:
NIH/National Institute on Deafness and Other Communication Disorders
Summary:
A molecule in an animal model that acts as a key player in establishing the organization of the auditory system has been discovered in a recent study. The molecule, a protein known as Bmp7, is produced during embryonic development and acts to help sensory cells find their ultimate position on the tonotopic map, which is the fundamental principle of organization in the auditory system.

Researchers at the National Institutes of Health have uncovered a molecule in an animal model that acts as a key player in establishing the organization of the auditory system. The molecule, a protein known as Bmp7, is produced during embryonic development and acts to help sensory cells find their ultimate position on the tonotopic map, which is the fundamental principle of organization in the auditory system. The tonotopic map groups sensory cells by the sound frequencies that stimulate them. The study is the first to identify one of the molecular mechanisms that determines position.

Findings from the study, led by Zoe F. Mann, Ph.D and Matthew W. Kelley, Ph.D., of the Laboratory of Cochlear Development at the National Institute on Deafness and Other Communication Disorders (NIDCD), were published in the May 20, 2014 issue of Nature Communications. The research was performed in collaboration with scientists from the University of Virginia (UVa) School of Medicine, Charlottesville, and Imperial College in London. The American Hearing Research Foundation provided additional support.

An additional study, appearing in the same edition, is led by NIDCD-supported researchers Benjamin R. Thiede, Ph.D., and Jeffrey T. Corwin, Ph.D. at UVa. Working in collaboration with Drs. Mann and Kelley, the researchers reveal that another signaling molecule, retinoic acid, acts in concert with Bmp7 to position cells.

"The findings could open doors to therapies that take advantage of Bmp7's navigational talents to direct the formation of regenerated sensory cells that are tuned to respond to a specific frequency," says James F. Battey, Jr., M.D., Ph.D., director of NIDCD. "Since many forms of hearing loss are limited to specific frequencies, this approach could lead to replacement sensory cells that are tailored to individual needs."

The human ear can detect a wide range of frequencies, from the low rumble of distant thunder to the high-pitched whine of a mosquito. The sensory cells that detect these sounds are called hair cells, named for the hair-like strands that cluster on their tops. Hair cells are spread across a flat surface called the basilar membrane, which rolls up like a carpet and tucks into a snail shell-shaped structure in the inner ear called the cochlea.

Part of what accounts for our remarkable range of hearing is that hair cells have different specializations. Rather than working to sense all audible frequencies, each of our roughly 16,000 hair cells is dedicated to a narrow range. Hair cells are ordered along the basilar membrane's length, or axis, according to the frequency they detect. Those that sense low pitches are at one end and those that detect high-frequency sounds are at the opposite end. The cells in between step through the mid-range pitches.

This spatial arrangement of hair cells on the basilar membrane-the tonotopic map -- has been known for years. What hasn't been known is how each hair cell learns to "hear" specific frequencies.

"During development, hair cells at each position along the axis need to figure out where they are so that they know what frequency they should be listening to," said Dr. Kelley. "This is called positional identity. We wanted to know how hair cells figure out their position."

Dr. Kelley suspected that, like numbers on a ruler, the positions of hair cells along the basilar membrane were marked by stepwise differences in the level of a signaling molecule that would determine position. Molecular concentration gradients of this sort have been shown to steer the positioning of other cell types in the body during development.

To see if such a signaling molecule might be involved in the structural organization of the cochlea, Dr. Mann examined the basilar papilla from six-day old chick embryos. The basilar papilla in chickens is similar to the cochlea in mammals, with hair cells arranged along the length of its basilar membrane in a similar fashion according to frequency. The researchers reasoned that if a molecular concentration gradient were involved in positioning hair cells, the molecule's level would be higher at one end of the basilar papilla than the other.

When they split the basilar papilla in half looking for molecules, one stood out because of the striking difference in its level between the two halves -- Bmp7 -- a signaling protein known to play a role in the development of bone and kidneys. Additional experiments revealed a gradual gradient in the level of Bmp7 across the length of the basilar papilla.

The researchers next showed that Bmp7 promotes the development of low-frequency-sensing hair cells. When they bathed developing basilar papillas in a solution containing Bmp7, they found that all the hair cells developed characteristics of low-frequency-sensing hair cells, even those at the high-frequency end.

These findings suggest that during embryonic development, high levels of Bmp7 at one end of the basilar papilla signal the formation of low-frequency-sensing hair cells. Decreasing levels of Bmp7 along the length of the basilar papilla map with a gradual change towards tuning to higher frequencies.

In future work, Dr. Kelley and his team aim to use a mouse model to understand the role of Bmp7 in specifying the positioning of hair cells in a mammalian organism. Bmp7 is known to be present in cells of the inner ear in mammals, suggesting a possible role for the molecule in tuning. The researchers hope to be able to outline its precise role in patterning parts of the auditory system.

"The entire auditory system is assembled according to individual frequencies," said Dr. Kelley. "Complex sounds like music or speech that consist of many different frequencies are split into individual frequencies in the ear, processed through separate channels, and then reassembled in the brain. By revealing the part played by Bmp7 in patterning hair cells in the inner ear, we may have uncovered a broader role for the molecule in the auditory system as a whole."


Story Source:

The above story is based on materials provided by NIH/National Institute on Deafness and Other Communication Disorders. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zoë F. Mann, Benjamin R. Thiede, Weise Chang, Jung-Bum Shin, Helen L. May-Simera, Michael Lovett, Jeffrey T. Corwin, Matthew W. Kelley. A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4839

Cite This Page:

NIH/National Institute on Deafness and Other Communication Disorders. "Key factor in early auditory system development discovered." ScienceDaily. ScienceDaily, 20 May 2014. <www.sciencedaily.com/releases/2014/05/140520123438.htm>.
NIH/National Institute on Deafness and Other Communication Disorders. (2014, May 20). Key factor in early auditory system development discovered. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2014/05/140520123438.htm
NIH/National Institute on Deafness and Other Communication Disorders. "Key factor in early auditory system development discovered." ScienceDaily. www.sciencedaily.com/releases/2014/05/140520123438.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) — Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) — Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) — It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins