Featured Research

from universities, journals, and other organizations

Crystal structure finding points to possible battery candidate

Date:
May 22, 2014
Source:
National Institute of Standards and Technology (NIST)
Summary:
Analysis of a manganese-based crystal has produced the first clear picture of its molecular structure. The findings could help explain the magnetic and electronic behavior of the whole family of crystals, many of which have potential for use in batteries.

At the top of this image, sodium fills in layers of the crystal, represented by one bright yellow dot followed by three darker ones; at bottom, the layers' magnetic ordering is shown as green and purple dots representing magnesium at two different charge states, with the green-in-purple dots representing a mixture of the two charge states. Artwork generated from a scanning tunneling microscope image.
Credit: NIST

Analysis of a manganese-based crystal by scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) has produced the first clear picture of its molecular structure. The findings could help explain the magnetic and electronic behavior of the whole family of crystals, many of which have potential for use in batteries.

The family of crystals it belongs to has no formal name, but it has three branches, each of which is built around manganese, cobalt or iron -- transition metals that can have different magnetic and charge properties. But regardless of family branch, its members share a common characteristic: They all store chemical energy in the form of sodium, atoms of which can easily flow into and out of the layers of the crystal when electric current is applied, a talent potentially useful in rechargeable batteries.

Other members of this family can do a lot of things in addition to energy storage that interest manufacturers: Some are low-temperature superconductors, while others can convert heat into electricity. The trouble is that all of them are, on the molecular level, messy. Their structures are so convoluted that scientists can't easily figure out why they do what they do, making it hard for a manufacturer to improve their performance.

Fortunately, this particular manganese crystal is an exception. "It's the one stable compound we know of in the manganese branch that has a perfect crystal lattice structure," says Jeff Lynn of the NIST Center for Neutron Research (NCNR). "That perfection means we can isolate all its internal electronic and magnetic interactions and see them clearly. So now, we can start exploring how to make those sodium atoms more movable."

Team members from MIT made the material and performed analysis using state-of-the-art lab techniques such as electron microscopy, but they needed help from the NCNR's neutron beams to tease out the interactions between its individual atoms. The effort showed that the crystal was unusual for reasons beyond its structural perfection. Its layers absorb sodium in a fashion rarely seen in nature: In each layer, one "stripe" of atoms fills up completely with sodium, then the next three stripes fill up only halfway before another full stripe appears. Lynn says the pattern is caused by different charges and magnetic moments that manganese atoms possess in different parts of the crystal, a feature revealed by analysis of the NCNR data.

"This particular crystal is probably not the one you'd use in a battery or some other application, it just permits us to understand what's happening with its internal structure and magnetism for the first time," Lynn says. "Now we have a basis for tailoring the properties of these materials by changing up the transition metals and changing the sodium content. We no longer have to hunt around in the dark and hope."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Li, Xiaohua Ma, Dong Su, Lei Liu, Robin Chisnell, Shyue Ping Ong, Hailong Chen, Alexandra Toumar, Juan-Carlos Idrobo, Yuechuan Lei, Jianming Bai, Feng Wang, Jeffrey W. Lynn, Young S. Lee, Gerbrand Ceder. Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2. Nature Materials, 2014; 13 (6): 586 DOI: 10.1038/nmat3964

Cite This Page:

National Institute of Standards and Technology (NIST). "Crystal structure finding points to possible battery candidate." ScienceDaily. ScienceDaily, 22 May 2014. <www.sciencedaily.com/releases/2014/05/140522123546.htm>.
National Institute of Standards and Technology (NIST). (2014, May 22). Crystal structure finding points to possible battery candidate. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/05/140522123546.htm
National Institute of Standards and Technology (NIST). "Crystal structure finding points to possible battery candidate." ScienceDaily. www.sciencedaily.com/releases/2014/05/140522123546.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins