Featured Research

from universities, journals, and other organizations

Production technology for more efficient jet engines

Date:
May 30, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Aircrafts have to be more efficient – a crucial point when it comes to the design of jet engines. However, in the design of the components, the engineers also need to consider whether these can be economically produced. A new process chain provides more design freedom and allows a more efficient production as well as repair processes. Several components have been produced or repaired with the help of a new technology, researchers report.

The engines are easier and faster to install when the individual components already include six vanes instead of the previous two.
Credit: Fraunhofer ILT

Aircrafts have to be more efficient -- a crucial point when it comes to the design of jet engines. However, in the design of the components, the engineers also need to consider whether these can be economically produced. Yet, a new process chain provides more design freedom and allows a more efficient production as well as repair processes. At the ILA Berlin Air Show from May 20 to 25, Fraunhofer researchers from Aachen, Germany will be presenting several components that have been produced or repaired with the help of this new technology (Hall 6, Stand 6212).

Related Articles


According to forecasts, air traffic will continue to increase in the future. In order to avoid an excessive pollution aircrafts will have to fly with less fuel und less emissions. Their production should also save material and time resources.

Completely free design

In the design of engine components, the engineers previously had to be especially sure that new components could be produced. The motto was: "Design for Manufacture." "We can now turn this paradigm around and, instead of 'Design for Manufacture', we can offer 'Manufacture for Design'," says Dr. Ingomar Kelbassa, head of department at the Fraunhofer Institute for Laser Technology ILT. This means that the scientists can produce components that previously could not be manufactured. This is possible, for instance, with Selective Laser Melting (SLM). Step by step laser radiation is scanned across a powder bed and traces out the form of the component within this specific layer. Wherever the laser radiation impacts the powder, the powder initially melts and then solidifies to form a solid mass. In this way, the component is built-up layer by layer. Until now, the parts were subtractively produced by e.g. milling. This involved a great loss of material, of course, and there are geometric restrictions in the production of certain geometries.

The researchers are now working with their colleagues from the Fraunhofer Institute for Production Technology IPT on the integration the Additive Manufacture AM into an entire, continuous process chain. To illustrate what the new process chain can achieve, they have produced a Nozzle Guide Vane (NGV) cluster that consists out of six double vanes. Previously, the vanes for turbines could only be produced in pairs, as twin blades. Now, they can be installed much more easily and quickly. The experts have also improved the base of the NGV cluster, that they will be showcasing at the trade show: This was previously massive in terms of manufacturing, but for the first time, a honeycomb structure is now feasible from the design and manufacturable from the production point of view. The entire component will be about 30 percent lighter as a result. "We combine subtractive, subsequent milling with additive SLM," explains Dr. Thomas Bergs, Managing Chief Engineer at the IPT. The researchers first compare how powerful the individual processes are, and then, whether they offer more design freedom -- and thus more opportunities to increase the efficiency of the engine, significantly.

The research is a subproject of the Cluster of Innovation AdaM, short for "Adaptive production for Resource Efficiency in Energy and Mobility": This is where the Fraunhofer Institutes IPT and ILT as well as 21 industrial partners pool their skills. The goal is to technically implement new concepts for turbo machinery -- for engines, among other things -- so that they can convert energy more efficiently. Furthermore, CO2 emissions are reduced and resources conserved.

Repair is part of the life cycle, too

If one considers the life-cycle of, for instance, a turbine blade, at some point, it's time for repairs. In the Cluster of Innovation AdaM, the researchers have also considered the Maintenance, Repair and Overhaul (MRO) of engine blades: While the technicians previously had to repair these blades manually, the process is now fully automated. "We do not even need halfe the processing time. And more importantly, the method is reproducible and ensures high-quality repairs," says Bergs.

An important step toward automation was the development of the "CAx framework": This software approach allows all the various repair technologies to be operated from a single platform. "CA" stands for computer aided, "x" for the individual technologies of the production. Firstly, the geometric data of damaged or worn-out blade is acquired by e.g. digitizing. Secondly, a milling machine blends out the defect and thirdly,laser radiation builds-up the blade again layer by layer via Laser Material Deposition (LMD). The researchers have already implemented this method for gas turbines; now, they can also transfer it to engine blades.

At the ILA trade show, the researchers show both a repaired helicopter blade that is approximately six inches wide, as well as the three-meter-long blade of a Transall aircraft. Additionally, they present a new manufacturing method for blade integrated disks (blisks): This involves heavy-duty compressor stages, of which the individual blades have been milled out of one piece (Milled from Solid -- MfS). The result is aerodynamically improved and lighter.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Production technology for more efficient jet engines." ScienceDaily. ScienceDaily, 30 May 2014. <www.sciencedaily.com/releases/2014/05/140530092407.htm>.
Fraunhofer-Gesellschaft. (2014, May 30). Production technology for more efficient jet engines. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/05/140530092407.htm
Fraunhofer-Gesellschaft. "Production technology for more efficient jet engines." ScienceDaily. www.sciencedaily.com/releases/2014/05/140530092407.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins