Featured Research

from universities, journals, and other organizations

'Neapolitan' exoplanets come in three flavors

Date:
June 2, 2014
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
The planets of our solar system come in two basic flavors, like vanilla and chocolate ice cream. We have small, rocky terrestrials like Earth and Mars, and large gas giants like Neptune and Jupiter. We're missing the astronomical equivalent of strawberry ice cream -- planets between about one and four times the size of Earth.

This artist's conception shows a planet forming from a disk of gas and dust surrounding a young star.
Credit: David A. Aguilar (CfA)

The planets of our solar system come in two basic flavors, like vanilla and chocolate ice cream. We have small, rocky terrestrials like Earth and Mars, and large gas giants like Neptune and Jupiter. We're missing the astronomical equivalent of strawberry ice cream -- planets between about one and four times the size of Earth. NASA's Kepler mission has discovered that these types of planets are very common around other stars.

Related Articles


New research following up on the Kepler discoveries shows that alien worlds, or exoplanets, can be divided into three groups -- terrestrials, gas giants, and mid-sized "gas dwarfs" -- based on how their host stars tend to fall into three distinct groups defined by their compositions.

"We were particularly interested in probing the planetary regime smaller than four times the size of Earth, because it includes three-fourths of the planets found by Kepler. That's where you'll find rocky worlds, which are the only kind that we would consider potentially habitable," says lead author Lars A. Buchhave of the Harvard-Smithsonian Center for Astrophysics (CfA).

Buchhave presented his research today at a meeting of the American Astronomical Society.

Kepler finds exoplanets using the transit method, looking for a star that dims as a planet passes in front of it from our point of view. We can learn the planet's size from how much starlight it blocks. However, to determine the planet's composition we need to measure its mass, so its density can be calculated. A rocky planet will be much denser than a gas giant. Unfortunately, the smaller a planet, the harder it is to measure its mass, especially for the dim and distant stars examined by Kepler.

Buchhave and his colleagues took a different approach. They measured the amount of elements heavier than hydrogen and helium, which astronomers collectively call metals, in stars with exoplanet candidates. Since a star and its planets form from the same disk of material, the metallicity of a star reflects the composition of the protoplanetary disk.

The team took follow-up spectra of more than 400 stars hosting over 600 exoplanets. Then, they conducted a statistical test to see if the sizes of the planets fell into natural groups, along with the stellar metallicities.

They found two clear dividing lines -- one at a size 1.7 times as large as Earth and the other at a size 3.9 times larger than Earth. They infer that these boundaries also mark changes in composition. Planets smaller than 1.7 Earths are likely to be completely rocky, while those larger than 3.9 Earths are probably gas giants.

Planets between 1.7 and 3.9 times the size of Earth were dubbed gas dwarfs since they have thick atmospheres of hydrogen and helium. The rocky cores of gas dwarfs formed early enough to accrete some gas, although they did not grow as large as gas giants like Jupiter.

In addition, Buchhave and his collaborators discovered that the size of the largest rocky world isn't fixed. The farther a planet is from its star, the larger it can grow before accumulating a thick atmosphere and turning into a gas dwarf. This suggests that some super-Earths can grow into true monsters.

Finally, the team found that stars with small, terrestrial worlds tended to have metallicities similar to the Sun. Stars hosting gas dwarfs tended to be slightly more metal-rich. Stars with gas giants contained the most metals -- about 50 percent more than our Sun.

"It seems that there is a 'sweet spot' of metallicity to get Earth-size planets, and it's about the same as the Sun. That makes sense because at lower metallicities you have fewer of the building blocks for planets, and at higher metallicities you tend to make gas giants instead," explains Buchhave.

He emphasizes that metallicity is only one of many factors determining what kinds of planets will form around a given star. Also, their study was limited to relatively close-in planets since those were the easiest for Kepler to spot. They plan to extend their study to planets in wider orbits as that data becomes available.


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.


Cite This Page:

Harvard-Smithsonian Center for Astrophysics. "'Neapolitan' exoplanets come in three flavors." ScienceDaily. ScienceDaily, 2 June 2014. <www.sciencedaily.com/releases/2014/06/140602115832.htm>.
Harvard-Smithsonian Center for Astrophysics. (2014, June 2). 'Neapolitan' exoplanets come in three flavors. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2014/06/140602115832.htm
Harvard-Smithsonian Center for Astrophysics. "'Neapolitan' exoplanets come in three flavors." ScienceDaily. www.sciencedaily.com/releases/2014/06/140602115832.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com
Lunar Mission One Could Send Your Hair to The Moon

Lunar Mission One Could Send Your Hair to The Moon

Buzz60 (Nov. 19, 2014) A British-led venture called Lunar Mission One plans to send a module to the moon with keepsakes from Earth. Vanessa Freeman (@VanessaFreeTV) tells you how to get your photos and DNA onboard. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins