Featured Research

from universities, journals, and other organizations

New pneumatic launchers for analyzing resistance to impacts, improving armor plating

Date:
June 2, 2014
Source:
Carlos III University of Madrid
Summary:
New pneumatic launchers make it possible to carry out a wide range of studies on problems of impact that arise in the aeronautics industry and on optimum armor plating in other sectors. "Our goal is to design armor plating whose protective behavior is optimum," explains the head of the laboratory. "If an element is well designed, a collision should not produce any catastrophic damage, but if not, the impact of a piece could go through it like a knife through butter," he comments.

New pneumatic launchers at the Impact on Aeronautical Structures Laboratory, located at the Universidad Carlos III de Madrid (UC3M) Science Park, make it possible to carry out a wide range of studies on problems of impact that arise in the aeronautics industry and on optimum armor plating in other sectors.
Credit: Image courtesy of Carlos III University of Madrid

New pneumatic launchers at the Impact on Aeronautical Structures Laboratory, located at the Universidad Carlos III de Madrid (UC3M) Science Park, make it possible to carry out a wide range of studies on problems of impact that arise in the aeronautics industry and on optimum armor plating in other sectors.

"At these specialized facilities, which are linked to the UC3M-Airbus Group Joint Center, scientists are studying how structural elements react to applied loads at both low and high speeds. Phenomena of this sort can occur during maintenance operations (a tool falling in an aircraft) or while the elements are functioning. In the case of an airplane, for example, it can happen when a pebble hits an airplane during takeoff, or when a slab of ice comes off of a propeller or the leading edge of a wing and hits the fuselage.

"Our goal is to design armor plating whose protective behavior is optimum," explains José Antonio Loya, head of the laboratory and researcher in the UC3M Department of Continuum Mechanics and Structural Analysis. "If an element is well designed, a collision should not produce any catastrophic damage, but if not, the impact of a piece could go through it like a knife through butter," he comments.

Models and Impact Tests

The studies that the researchers carry out help them better understand how structures respond to different kinds of impacts. At present, these studies entail reproducing computer models of the structures and analyzing what happens with certain impacts by using computer simulations. To validate the numerical models developed, it is necessary to produce impacts against real structural elements in the laboratory, under conditions similar to those when the elements are in use. Here is where the pneumatic launchers and high-speed cameras of the laboratory come into play, as they make it possible to examine every detail of the consequences that, for example, the collision of a slab of ice against a piece of carbon fiber from an airplane fuselage has.

The laboratory has three launchers of different calibers. Of these, the smallest-caliber launcher can reach impact speeds of up to 1000 meters per second, which is 3,600 kilometers per hour, almost three times the speed of sound. The last launcher installed was built jointly with the company VTI (designated in Spanish as a " pyme," the initials which stand for the category of small or medium firm), located at the UC3M "Leganés Tecnológico" Science Park. This launcher has a caliber of 60mm and can fire objects up to 900 kilometers per hour, around the speed at which airliners make trans-Atlantic flights. The projectiles normally fired by this kind of device are spherical or cylindrical. This new system makes it possible to launch other kinds of geometrical objects: anything that weighs less than 250 grams and has a diameter that is smaller than the machine caliber can be used as a projectile. "What we do in those cases is to encapsulate our projectile with something the launching tube can be sealed with so that the gas propels it properly," explains Loya. This has allowed the launching of ice projectiles with prismatic geometry to simulate the impact of ice that has come off the blade of a propeller or the leading edge of a wing against the fuselage of an airplane.

This kind of work has numerous practical applications because there are many components that can be subjected to impacts, from the casing of a mobile telephone, which should resist blows when it falls to the ground, to solar panels, susceptible to the impact of hail. "There are industrial sectors which are interested in analyzing the energy that a structure is capable of absorbing during a collision, while in others, the focus is on how much an impacting fragment penetrates," explain the researchers. Their work can be applied to the transportation sector, as it can improve the features of motorcycle helmets, automobile windshields and fuselages of airplanes and trains, where speed converts any object into a projectile capable of perforation.

In addition to high-speed pneumatic launchers, the laboratory has other equipment that enables researchers to make a complete mechanical description of structural elements, at both low and high temperatures. The laboratory is concentrated on the study of light structures built mainly from compound materials, like those used in the aeronautics and aerospace industries. In studies recently published in the journals Composites: Part A and Composite Structures, for example, researchers from the laboratory have created analytical models that identify different mechanisms of energy absorption after an impact on carbon/epoxy laminations and sandwich-type materials, respectively, and which have satisfactorily reproduced the experimental results obtained.

R&D&I in Problems of Impact

Scientists use the laboratory facilities to carry out their research within the framework of national or international programs. Different researchers from the department produce their doctoral theses there. Moreover, a regular client is the aeronautics sector, where there are numerous companies that want to improve their designs to make them lighter and more resistant at a lower cost. An impossible goal? With R&D, they can find innovative solutions in this and other contexts. The fact that the laboratory is located in the business environment of the UC3M Science Park helps it meet the demands of several industrial sectors in addition to the aeronautics sector, where it enjoys prestige. In this regard, note the scientists, they can work as technical consultants for any company interested in analyzing different problems related to the mechanics of solids or impact resistance.

This new facility joins the group of applied R&D&I laboratories that have been established at the UC3M Science Park in recent years in the area of safety and for the aerospace sector, thanks to the boost from different competitive public tenders. With the goal of contributing to the improvement of the competitiveness of production and to social welfare, the laboratories respond to the previous identification of the needs of different sectors and areas of innovation.


Story Source:

The above story is based on materials provided by Carlos III University of Madrid. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Pernas-Sánchez, J.A. Artero-Guerrero, D. Varas, J. López-Puente. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates. Composites Part A: Applied Science and Manufacturing, 2014; 60: 24 DOI: 10.1016/j.compositesa.2014.01.006

Cite This Page:

Carlos III University of Madrid. "New pneumatic launchers for analyzing resistance to impacts, improving armor plating." ScienceDaily. ScienceDaily, 2 June 2014. <www.sciencedaily.com/releases/2014/06/140602132228.htm>.
Carlos III University of Madrid. (2014, June 2). New pneumatic launchers for analyzing resistance to impacts, improving armor plating. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/06/140602132228.htm
Carlos III University of Madrid. "New pneumatic launchers for analyzing resistance to impacts, improving armor plating." ScienceDaily. www.sciencedaily.com/releases/2014/06/140602132228.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins