Featured Research

from universities, journals, and other organizations

Quest for the bionic arm: Advancements and challenges

Date:
June 3, 2014
Source:
American Academy of Orthopaedic Surgeons
Summary:
Nearly 2,000 veterans have returned from Iraq and Afghanistan with injuries requiring amputations; 14 percent of those injured veterans required upper extremity amputations. The recent advancements in upper extremity bionics and the challenges that remain in creating a prosthesis that meets or exceeds the abilities of a human arm and hand are the focus of new research.

In the past 13 years, nearly 2,000 veterans returned from Iraq and Afghanistan with injuries requiring amputations; 14 percent of those injured veterans required upper extremity amputations. To treat veterans with upper extremity amputations, scientists continue to pursue research and development of bionic arms and hands with full motor and sensory function. An article appearing in the June issue of the Journal of the American Academy of Orthopaedic Surgeons (JAAOS) reviews the recent advancements in upper extremity bionics and the challenges that remain in creating a prosthesis that meets or exceeds the abilities of a human arm and hand.

Related Articles


During the next 50 years, "I truly believe we will be able to make artificial arms that function better than many injured arms that doctors are saving today," said article author Douglas T. Hutchinson, MD, associate professor of orthopaedics at the University of Utah Medical School, and chief of hand surgery at Primary Children's Medical Center, the Veterans Affairs Medical Center, and Shriners Intermountain Hospital. Advancements in prostheses technology will not only benefit injured veterans but also, eventually, the civilian population with upper extremity injuries that require amputations.

One of the most commonly used upper extremity prostheses continues to be the myoelectric prosthesis. Created more than 50 years ago, this prosthesis allows residual muscles to act as natural batteries to create transcutaneous signals (transmitted through the skin) to control the movements of the prosthetic arm and hand. However, the muscles used most often are the biceps and triceps, which do not naturally translate to the opening and closing of a hand. In addition, myoelectric prosthetics do not look natural and are heavy, hot, uncomfortable, and not waterproof. Sometimes the socket interface used to attach the prosthesis may interfere with the function of a residual joint such as the elbow.

Because of these challenges -- as well as the inability to "feel" the prosthesis -- the wearer never achieves fine motor control, the simultaneous use of multiple joints, or full rotation and use of the hand. The prosthesis also requires a long period of learning and adjustment. As a result, only about two thirds of patients properly fitted for upper extremity prosthesis use it daily, with many patients instead choosing to wear a body-operated "hook" device, invented during the Civil War and refined during World War I and World War II. Others choose not to use their prostheses because they prefer the ability to have physical sensation from their stump.

The 2014 federal budget for prostheses research alone is $2.5 billion. The U.S. Department of Defense Advanced Research Project (DARPA) has already invested more than $150 million into their Revolutionizing Prosthetics Program, which is charged with creating an upper extremity prosthesis that will function as a normal human arm does, complete with full motor and sensory functions. According to Dr. Hutchinson, the program has created several advanced upper extremity prostheses, "providing function and ease of learning superior to those of conventional myoelectric prostheses."

However, these prosthetic devices have a long way to go for effective and broad use in patients. Many are heavy and uncomfortable with short-life batteries. Current infection rates with osseous-integrated devices at the prosthesis-skin interface also remain high at approximately 45 percent. Most challenging is the problem of efficiently and accurately sending brain signals through the muscles and peripheral nerves of the arm and hands, which may require the creation and use of a reliable wireless device or direct wiring through an osseous (bone tissue)-integrated implant.

Answers may be found in combining recent advancements in prosthetic devices with breakthroughs in maintaining nerve and muscle function in badly damaged limbs.

"Orthopaedic surgeons who do peripheral nerve surgery (hand surgeons) will be part of the team that puts these devices into patients, but perhaps more relevant than that will be the way we treat severe near amputations or complete amputations differently," said Dr. Hutchinson. "In an amputation surgery, we will need to preserve muscles and nerves even more than we already do to make this type of later reconstruction more successful."

"We currently spend a lot of time, energy, and money saving hands and arms that truly have a poor prognosis because the alternative, an amputation and an insensate myoelectric prosthesis attached by a socket, is even worse," Dr. Hutchinson added. "As we improve the prosthesis, the options for these severely injured upper extremities will increase."

In addition, the perfection of nerve utilization could potentially aid other conditions, such as cerebral palsy, chronic nerve pain, and brachial plexus injuries.


Story Source:

The above story is based on materials provided by American Academy of Orthopaedic Surgeons. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. T. Hutchinson. The Quest for the Bionic Arm. Journal of the American Academy of Orthopaedic Surgeons, 2014; 22 (6): 346 DOI: 10.5435/JAAOS-22-06-346

Cite This Page:

American Academy of Orthopaedic Surgeons. "Quest for the bionic arm: Advancements and challenges." ScienceDaily. ScienceDaily, 3 June 2014. <www.sciencedaily.com/releases/2014/06/140603092600.htm>.
American Academy of Orthopaedic Surgeons. (2014, June 3). Quest for the bionic arm: Advancements and challenges. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/06/140603092600.htm
American Academy of Orthopaedic Surgeons. "Quest for the bionic arm: Advancements and challenges." ScienceDaily. www.sciencedaily.com/releases/2014/06/140603092600.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins