Featured Research

from universities, journals, and other organizations

Surprisingly strong magnetic fields can match black holes' pull: Long-neglected magnetic fields have an unexpected presence

Date:
June 4, 2014
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems' dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes' powerful gravitational pull.

A computer simulation of gas (in yellow) falling into a black hole (too small to be seen). Twin jets are also shown with magnetic field lines.
Credit: Alexander Tchekhovskoy, LBL

A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems' dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes' powerful gravitational pull, says a team of scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany. The findings are published in this week's issue of Nature.

Related Articles


"This paper for the first time systematically measures the strength of magnetic fields near black holes," says Alexander Tchekhovskoy, the Berkeley Lab researcher who helped interpret the observational data within the context of existing computational models. "This is important because we had no idea, and now we have evidence from not just one, not just two, but from 76 black holes."

Previously, Tchekhovskoy, who is also a postdoctoral fellow at the University of California, Berkeley, had developed computational models of black holes that included magnetic fields. His models suggested a black hole could sustain a magnetic field that was as strong as its gravity, but there was not yet observational evidence to support this prediction. With the two forces balancing out, a cloud of gas caught on top of the magnetic field would be spared the pull of gravity and instead levitate in place.

The magnetic field strength was confirmed by evidence from jets of gas that shoot away from supermassive black holes. Formed by magnetic fields, these jets produce a radio emission. "We realized that the radio emission from black holes' jets can be used to measure the magnetic field strength near the black hold itself," says Mohammad Zamaninasab, the lead author of the study, who did the work while at MPIfR.

Other research teams had previously collected radio-emission data from "radio-loud" galaxies using the Very Long Baseline Array, a vast network of radio telescopes in the United States. The researchers analyzed this pre-existing data to create radio-emission maps at different wavelengths. Shifts in jet features between different maps let them calculate the field strength near the black hole.

Based on the results, the team found not only that the measured magnetic fields can be as strong as a black hole's gravity, but that they are also comparable in strength to those produced inside MRI machines found in hospitals-roughly 10,000 times greater than the field of Earth itself.

Tchekhovskoy says the new results mean theorists must re-evaluate their understanding of black-hole behavior. "The magnetic fields are strong enough to dramatically alter how gas falls into black holes and how gas produces outflows that we do observe, much stronger than what has usually been assumed," he says. "We need to go back and look at our models once again."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. The original article was written by Kate Greene. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Zamaninasab, E. Clausen-Brown, T. Savolainen, A. Tchekhovskoy. Dynamically important magnetic fields near accreting supermassive black holes. Nature, 2014; 510 (7503): 126 DOI: 10.1038/nature13399

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Surprisingly strong magnetic fields can match black holes' pull: Long-neglected magnetic fields have an unexpected presence." ScienceDaily. ScienceDaily, 4 June 2014. <www.sciencedaily.com/releases/2014/06/140604133818.htm>.
DOE/Lawrence Berkeley National Laboratory. (2014, June 4). Surprisingly strong magnetic fields can match black holes' pull: Long-neglected magnetic fields have an unexpected presence. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2014/06/140604133818.htm
DOE/Lawrence Berkeley National Laboratory. "Surprisingly strong magnetic fields can match black holes' pull: Long-neglected magnetic fields have an unexpected presence." ScienceDaily. www.sciencedaily.com/releases/2014/06/140604133818.htm (accessed October 26, 2014).

Share This



More Space & Time News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins