Featured Research

from universities, journals, and other organizations

Connecting dead ends increases power grid stability

Date:
June 9, 2014
Source:
Potsdam Institute for Climate Impact Research (PIK)
Summary:
Climate change mitigation strategies such as the German Energiewende require linking vast numbers of new power generation facilities to the grid. As the input from many renewable sources is rather volatile, depending on how much the wind blows or the sun shines, there's a higher risk of local power instabilities and eventually blackouts. Scientists have found that connecting dead ends can significantly increase power grid stability.

Climate change mitigation strategies such as the German Energiewende require linking vast numbers of new power generation facilities to the grid. As the input from many renewable sources is rather volatile, depending on how much the wind blows or the sun shines, there's a higher risk of local power instabilities and eventually blackouts. Scientists from the Potsdam Institute for Climate Impact Research (PIK) now employed a novel concept from nonlinear systems analysis called basin stability to tackle this challenge. They found that connecting dead ends can significantly increase power grid stability. The findings are confirmed by a case study of the Scandinavian power system.

Related Articles


"The cheapest and thus widespread way to implement new generators into a high-voltage power grid is by simply adding single connections, like creating dead-end streets in a road network," says Peter J. Menck, lead author of the study to be published in Nature Communications. To test the resulting system's stability, the scientists simulated large perturbations in a standard electrical engineering model. "We found that in the power grid nodes close to the dead-end connections, the ability to withstand perturbations is largely reduced," Menck says.

"Yet it turned out that this can be easily repaired by judiciously adding just a few transmission lines," Menck says. Apparently, the provision of alternative routes in the network should allow for a dispersion of perturbation effects. Thereby, technical protection mechanisms at the different nodes of the grid can deal with problems, while dead ends make the effects culminate at single points of the network.

Applying a novel mathematical concept for the first time

These new insights are the result of applying for the first time the novel mathematical concept of basin stability developed at PIK. "From energy grids to the Amazon jungle or human body cells, systems possess multiple stable states," explains co-author Jόrgen Kurths who leads the institute's research domain 'Transdisciplinary Methods and Concepts'. "To understand blackouts, forest dieback, or cancer, it is crucial to quantify the stability of a system -- and that's precisely what we're now able to do."

The concept conceives a system's alternative states as points in a mountainous landscape with steep rocks and deep valleys. The likelihood that a system returns to a specific sink after suffering a severe blow depends on how big this basin is. "We're putting numbers on this," says Kurths.

Compared to the costs of a blackout, adding lines would be affordable

"Compared to the potential costs of a blackout, adding a few transmission lines would definitely be affordable," says co-author Hans Joachim Schellnhuber, director of PIK. "The new study gives just one example that innovative solutions, in our case even based on already existing technology, can indeed help master the transformation of our energy system, for many good reasons such as climate stabilization."


Story Source:

The above story is based on materials provided by Potsdam Institute for Climate Impact Research (PIK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter J. Menck, Jobst Heitzig, Jόrgen Kurths, Hans Joachim Schellnhuber. How dead ends undermine power grid stability. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4969

Cite This Page:

Potsdam Institute for Climate Impact Research (PIK). "Connecting dead ends increases power grid stability." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609122100.htm>.
Potsdam Institute for Climate Impact Research (PIK). (2014, June 9). Connecting dead ends increases power grid stability. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140609122100.htm
Potsdam Institute for Climate Impact Research (PIK). "Connecting dead ends increases power grid stability." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609122100.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Could Cheap Oil Help Fix U.S. Roads?

Could Cheap Oil Help Fix U.S. Roads?

Newsy (Dec. 21, 2014) — As falling oil prices boost Americans' spending power, the U.S. government is also gaining flexibility from savings on oil. Video provided by Newsy
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins