Featured Research

from universities, journals, and other organizations

Circuits capable of functioning at temperatures greater than 350 degrees Celsius

Date:
June 12, 2014
Source:
University of Arkansas, Fayetteville
Summary:
Engineering researchers have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius – or roughly 660 degrees Fahrenheit. Their work will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment -- all of which must perform at high and often extreme temperatures.

The silicon-carbide wafer contains more 1000 individual circuits.
Credit: Image courtesy of University of Arkansas, Fayetteville

Engineering researchers at the University of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 degrees Celsius -- or roughly 660 degrees Fahrenheit. Their work, funded by the National Science Foundation, will improve the functioning of processors, drivers, controllers and other analog and digital circuits used in power electronics, automobiles and aerospace equipment -- all of which must perform at high and often extreme temperatures.

"This ruggedness allows these circuits to be placed in locations where standard silicon-based parts can't survive," said Alan Mantooth, Distinguished Professor. "The circuit blocks we designed contributed to superior performance of signal processing, controllers and driver circuitry. We are extremely excited about the results so far."

The research is critical because one-third of all power produced in the United States passes through some kind of power electronic converter or motor drive before it reaches the end user. Circuits developed by the University of Arkansas team will enable tight integration of control in the tough environmental conditions these applications demand. They will also improve electrical efficiency while simultaneously reducing the overall size and complexity of these systems.

The researchers worked with silicon carbide, a semiconducting material that is more rugged than conventional materials used in electronics. Silicon carbide is able to withstand extremely high voltage and is a good thermal conductor, meaning it can operate at high temperatures without requiring extra equipment to remove heat.

The research team, led by Mantooth and Jia Di, professor of computer engineering, achieved the higher performance by combining silicon carbide with wide temperature design techniques. In the world of power electronics and integrated circuits, their work represents the first implementation of a number of fundamental analog, digital and mixed-signal blocks, such as a phase-locked loop using a complementary-style silicon carbide technology. A phase-locked loop, or PLL, is a control system that generates an output signal whose phase is related to the phase of an input signal. Such a function is critical in a number of circuit applications such as signal synchronization, frequency synthesis, and modulation and demodulation schemes.

The research was part of the National Science Foundation's Building Innovation Capacity program, which is designed to partner university and industry research to build intellectual collaborations so that innovations flow from ideas to solid research results, company prototypes and products. The University of Arkansas and two Fayetteville technology firms, Ozark Integrated Circuits and Arkansas Power Electronics International, form the basis for this innovation ecosystem. Raytheon is also a key partner.

Ozark Integrated Circuits is commercializing the circuit technology. Arkansas Power Electronics International focuses on using the circuits in power applications.

The research funding was awarded to Arkansas Circuit Design Center, which is composed of two laboratories, one directed by Mantooth and one by Di. The Arkansas Circuit Design Center supports the mission of the University of Arkansas' National Center for Reliable Electric Power Transmission, which is funded as part of the federal government's focus on research and development on smart grid and renewable technologies. The center is one of only a few university-based research centers investigating electronic systems to make the nation's power grid more reliable and efficient. The U.S. Department of Energy has funded the center since 2005 because of the university's research expertise in advanced power electronics and long-term investigation of silicon carbide. Mantooth is executive director of the center.

Arkansas Power Electronics International specializes in advanced, high-performance electronics for a variety of customers and applications, including the defense, aerospace and hybrid/electric vehicle markets. Ozark Integrated Circuits is a semiconductor company that develops integrated circuits for remote sensing and actuation under extreme environmental conditions.

Mantooth is holder of the Twenty-First Century Chair in Mixed-Signal Integrated Circuit Design and Computer-Aided Design in the College of Engineering.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "Circuits capable of functioning at temperatures greater than 350 degrees Celsius." ScienceDaily. ScienceDaily, 12 June 2014. <www.sciencedaily.com/releases/2014/06/140612085010.htm>.
University of Arkansas, Fayetteville. (2014, June 12). Circuits capable of functioning at temperatures greater than 350 degrees Celsius. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2014/06/140612085010.htm
University of Arkansas, Fayetteville. "Circuits capable of functioning at temperatures greater than 350 degrees Celsius." ScienceDaily. www.sciencedaily.com/releases/2014/06/140612085010.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins