Featured Research

from universities, journals, and other organizations

Crossing the goal line: New tech tracks football in 3-D space

Date:
June 13, 2014
Source:
North Carolina State University
Summary:
Referees may soon have a new way of determining whether a football team has scored a touchdown or gotten a first down. Researchers have developed a system that can track a football in three-dimensional space using low-frequency magnetic fields.

Referees may soon have a new way of determining whether a football team has scored a touchdown or gotten a first down.
Credit: avid Ricketts

Referees may soon have a new way of determining whether a football team has scored a touchdown or gotten a first down. Researchers from North Carolina State University and Carnegie Mellon University, in collaboration with Disney Research, have developed a system that can track a football in three-dimensional space using low-frequency magnetic fields.

The technology could be particularly useful for situations when the ball is blocked from view, such as goal-line rushing attempts when the ball carrier is often buried at the bottom of a pile of players. The technology could also be useful for tracking the forward progress of the ball, or for helping viewers follow the ball during games with low visibility -- such as games played during heavy snow.

Previous attempts to design technology that tracks the position of a football have used high frequency radio waves. But these high frequency waves are absorbed by players and can be thwarted by the complex physical environment of a football stadium. Because the technology would be most useful in pile-ups, when the ball is obscured by players, these high-frequency approaches aren't practical -- the absorbed radio waves would result in incorrect or incomplete data on where the ball is located.

"But low frequency magnetic fields don't interact very strongly with the human body, so they are not affected by the players on the field or the stadium environment," says Dr. David Ricketts, an associate professor of electrical and computer engineering at NC State and senior author of a paper describing the research. "This is part of what makes our new approach effective.

The researchers designed and built a low frequency transmitter that is integrated into a football, and is within the standard deviation of accepted professional football weights. In other words, the football that has the built-in transmitter could be used in a National Football League game. Antennas, placed around the football field, receive signals from the transmitter and track its location.

But the researchers also had to address another complicating factor.

When low frequency magnetic fields come into contact with the earth -- such as the playing surface -- the ground essentially absorbs the magnetic field and re-emits it. This secondary field interacts with the original field and confuses the antennas, which can throw off the tracking system's accuracy.

"We realized that we could use a technique developed in the 1960s called complex image theory," says Dr. Darmindra Arumugam, lead author of the paper and a former Ph.D. student at Carnegie Mellon now at NASA's Jet Propulsion Laboratory. "Complex image theory allows us to account for the secondary fields generated by the earth and compensate for them in our model."

"We're still fine-tuning the system, but our goal is to get the precision down to half the length of a football, which is the estimated margin of error for establishing the placement of the football using eyesight alone," Ricketts says.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fischer, Brian E., LaHaie, Ivan J., Arumugam, Darmindra D., Griffin, Joshua D. et al. Measurements corner: Three-dimensional position and orientation measurements using magneto-quasistatic fields and complex image theory. Antennas and Propagation Magazine, IEEE, 2014 DOI: 10.1109/MAP.2014.6821771

Cite This Page:

North Carolina State University. "Crossing the goal line: New tech tracks football in 3-D space." ScienceDaily. ScienceDaily, 13 June 2014. <www.sciencedaily.com/releases/2014/06/140613101659.htm>.
North Carolina State University. (2014, June 13). Crossing the goal line: New tech tracks football in 3-D space. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/06/140613101659.htm
North Carolina State University. "Crossing the goal line: New tech tracks football in 3-D space." ScienceDaily. www.sciencedaily.com/releases/2014/06/140613101659.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins