Featured Research

from universities, journals, and other organizations

Fuel cells developed for increased airplane efficiency

Date:
June 16, 2014
Source:
Washington State University
Summary:
Researchers have developed the first fuel cell that can directly convert fuels, such as jet fuel or gasoline, to electricity, providing a dramatically more energy-efficient way to create electric power for planes or cars.

Graduate Student Byeong Wan Kwon (l) and WSU Associate Professor Su Ha inspect a fuel cell.
Credit: Image courtesy of Washington State University

Washington State University researchers have developed the first fuel cell that can directly convert fuels, such as jet fuel or gasoline, to electricity, providing a dramatically more energy-efficient way to create electric power for planes or cars.

Led by Professors Su Ha and M. Grant Norton in the Voiland College of Engineering and Architecture, the researchers have published the results of their work in the May edition of Energy Technology. A second paper on using their fuel cell with gasoline has been accepted for publication in the Journal of Power Sources. The researchers have made coin-sized fuel cells to prove the concept and plan to scale it up.

About 10 years ago, the researchers began developing a solid-oxide fuel cell to provide electrical power on commercial airplanes. Fuel cells offer a clean and highly efficient way to convert the chemical energy in fuels into electrical energy. In addition to increasing fuel efficiency and reducing emissions of harmful pollutants, fuel cells are quiet and would be particularly helpful when a plane is at a gate and the main jet engines are turned off.

A solid-oxide fuel cell is similar to a battery in that it has an anode, cathode, and electrolyte and creates electricity. But it uses fuel to create a continuous flow of electricity. The process could be approximately four times more efficient than a combustion engine because it is based on an electrochemical reaction. The solid-oxide fuel cell is different from other fuels cells in that it is made of solid materials, and the electricity is created by oxygen ions traveling through the fuel cell.

Using jet fuel and gasoline to power their fuel cell proved tricky. To avoid the added weight of a device that converts the complex fuel into simpler components, such as hydrogen and carbon monoxide (a mixture called synthesis gas) the researchers wanted to be able to directly feed the liquid fuel into the fuel cell. Furthermore, they had to overcome the problems of sulfur poisoning and coking, a process in which a solid product is created from imperfect combustion. Sulfur is present in all fossil-based fuels and can quickly deactivate fuel cells.

Using a unique catalyst material and a novel processing technique, Ha and Norton and collaborators at Kyung Hee University in South Korea and the Boeing Company in Seattle have produced a high-performance fuel cell that operates when directly fed with a jet fuel surrogate.

"The results of this research are a key step in the integration of fuel cell technology in aviation and the development of the more electric airplane," said Joe Breit, associate technical fellow at Boeing and a participating researcher on the project.

The researchers envision integrating their fuel cell with a battery to power auxiliary power units. These units are currently powered by gas turbines and operate lights, navigation systems and various other electrical systems. The two technologies complement each other's weaknesses, says Ha.

The researchers also have used gasoline to power their fuel cell and envision someday using it to power cars. Vehicles powered in this way could use existing gas stations, rather than having to develop a hydrogen-based infrastructure.


Story Source:

The above story is based on materials provided by Washington State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Byeong W. Kwon, Shuozhen Hu, Oscar Marin-Flores, M. Grant Norton, Jinsoo Kim, Louis Scudiero, Joe Breit, Su Ha . Cover Picture: High-Performance Molybdenum Dioxide-Based Anode for Dodecane-Fueled Solid-Oxide Fuel Cells (SOFCs) (Energy Technol. 5/2014). Energy Technology, 2014; 2 (5): 417 DOI: 10.1002/ente.201490009

Cite This Page:

Washington State University. "Fuel cells developed for increased airplane efficiency." ScienceDaily. ScienceDaily, 16 June 2014. <www.sciencedaily.com/releases/2014/06/140616141543.htm>.
Washington State University. (2014, June 16). Fuel cells developed for increased airplane efficiency. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2014/06/140616141543.htm
Washington State University. "Fuel cells developed for increased airplane efficiency." ScienceDaily. www.sciencedaily.com/releases/2014/06/140616141543.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins