Featured Research

from universities, journals, and other organizations

Fight-or-flight chemical prepares cells to shift the brain from subdued to alert state

Date:
June 18, 2014
Source:
Johns Hopkins Medicine
Summary:
Brain cells, called astrocytes because of their star-shaped appearance, can monitor and respond to nearby neural activity, but only after being activated by the fight-or-flight chemical norepinephrine. Because astrocytes can alter the activity of neurons, the findings suggest that astrocytes may help control the brain’s ability to focus.

Astrocyte activity is shown in green in this slice of tissue from the brain region that controls movement in mice. Internal, structural elements of the astrocytes are shown in magenta; cell bodies are in red.
Credit: Amit Agarwal and Dwight Bergles, courtesy of Cell Press

A new study from The Johns Hopkins University shows that the brain cells surrounding a mouse's neurons do much more than fill space. According to the researchers, the cells, called astrocytes because of their star-shaped appearance, can monitor and respond to nearby neural activity, but only after being activated by the fight-or-flight chemical norepinephrine. Because astrocytes can alter the activity of neurons, the findings suggest that astrocytes may help control the brain's ability to focus.

Related Articles


The study involved observing the cells in the brains of living, active mice over long periods of time. A combination of genetically engineered mice and advanced microscopy allowed the researchers to visualize the activity of astrocyte networks in different regions of the brain to learn how these abundant supporting cells are controlled.

The scientists monitored astrocytes in the area of the brain responsible for controlling movement and saw that the cells often increased their activity as the mice walked on treadmills -- but not always, and sometimes astrocytes became active when the animals were not moving. This lack of consistency suggested to the researchers that the astrocytes were not responding to nearby neurons, as had been thought.

Similarly, astrocytes in the vision processing area of the brain did not necessarily become active when the mice were stimulated with light, but they were sometimes active, even in the dark. The team solved both mysteries when they tested the idea that the astrocytes needed a signal to "wake them up" before they could respond to nearby neurons. That is how they found that norepinephrine, the brain's broadly distributed fight-or-flight signal, primes the astrocytes in both locations to "listen in" on nearby neuronal activity.

"Astrocytes are among the most abundant cells in the brain, but we know very little about how they are controlled and how they contribute to brain function," says Dwight Bergles, Ph.D., professor of neuroscience, who led the study. "Since memory formation and other important functions of the brain require a state of attention, we're interested in learning more about how astrocytes help create that state."

For example, Bergles says, "We know that astrocytes can regulate local blood flow, provide energy to neurons and release signaling molecules that alter neuronal activity. They could be doing any or all of those things in response to being activated. It is also possible that they act as a sort of megaphone to broadcast local norepinephrine signals to every neuron in the brain." Whatever the case may be, researchers now know that astrocytes are not idle loiterers. This ability to study astrocyte network activity in animals as they do different things will help to reveal how these cells contribute to brain function.

This research will be published in the journal Neuron on June 18.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Paukert, Amit Agarwal, Jaepyeong Cha, VanA. Doze, JinU. Kang, DwightE. Bergles. Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity. Neuron, 2014; 82 (6): 1263 DOI: 10.1016/j.neuron.2014.04.038

Cite This Page:

Johns Hopkins Medicine. "Fight-or-flight chemical prepares cells to shift the brain from subdued to alert state." ScienceDaily. ScienceDaily, 18 June 2014. <www.sciencedaily.com/releases/2014/06/140618131915.htm>.
Johns Hopkins Medicine. (2014, June 18). Fight-or-flight chemical prepares cells to shift the brain from subdued to alert state. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/06/140618131915.htm
Johns Hopkins Medicine. "Fight-or-flight chemical prepares cells to shift the brain from subdued to alert state." ScienceDaily. www.sciencedaily.com/releases/2014/06/140618131915.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com
Believing in Father Christmas Good for Children's Imaginations

Believing in Father Christmas Good for Children's Imaginations

AFP (Dec. 12, 2014) As the countdown to Christmas gets underway, so too does the Father Christmas conspiracy. But psychologists say that telling our children about Santa, flying reindeer and elves is good for their imaginations. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins