Featured Research

from universities, journals, and other organizations

Sweetest calculator in the world: Sugar molecules used as part of a chemical sequence for information processing

Date:
June 19, 2014
Source:
Friedrich Schiller University Jena
Summary:
A rectangular plastic board with 384 small wells is the setting for a chemist-researcher. The chemist carefully pipets some drops of sugar solution into a row of the tiny reaction vessels. As soon as the fluid has mixed with the contents of the vessels, fluorescence starts in some of the wells. What the chemist does here -- with his own hands -- could also be called in a very simplified way, the ‘sweetest computer in the world’. The reason: the sugar molecules used are part of a chemical sequence for information processing.

Chemist Martin Elstner from jena University and his colleagues use fluorescent sugar sensors for information processing.
Credit: Jan-Peter Kasper/FSU

Jena (Germany) In a chemistry lab at the Friedrich Schiller University Jena (Germany): Prof. Dr. Alexander Schiller works at a rectangular plastic board with 384 small wells. The chemist carefully pipets some drops of sugar solution into a row of the tiny reaction vessels. As soon as the fluid has mixed with the contents of the vessels, fluorescence starts in some of the wells. What the Junior Professor for Photonic Materials does here -- with his own hands -- could also be called in a very simplified way, the 'sweetest computer in the world'. The reason: the sugar molecules Schiller uses are part of a chemical sequence for information processing.

The chemist of Jena University and his two postgraduate students, Martin Elstner and Jörg Axthelm recently described in the new edition of the science journal Angewandte Chemie International Edition how they developed a molecular computer on the basis of sugar. "The binary logic which makes a conventional computer chip work is based on simple yes/no-decisions," Professor Schiller explains. "There is either electricity flowing between both poles of an electric conductor or there isn't." These potential differences are being coded as "0" and "1" and can be linked via logic gates -- the Boolean operators like AND, OR, NOT. In this way, a number of different starting signals and complex circuits are possible.

These logic links however can also be realized with the help of chemical substances, as the Jena chemists were able to show. For their 'sugar computer' they use several components: One fluorescent dye and a so-called fluorescence quencher. "If there are both components involved, the colorant can't display its impact and we don't see a fluorescence signal," Schiller says. But if sugar molecules are involved, the fluorescence quencher reacts with the sugar and thus loses its capability to suppress the fluorescence signal, which makes the dye fluorescent. Depending on whether the dye, the fluorescence quencher and the sugar are on hand to give the signal, a fluorescent signal results -- "1" -- or no signal -- "0."

"We link chemical reactions with computer algorithms in our system in order to process complex information," Martin Elstner explains. "If a fluorescence signal is registered, the algorithm determines what goes into the reaction vessel next." In this way signals are not translated and processed in a current flow, like in a computer but in a flow of matter. That their chemical processing platform works, Schiller and his staff demonstrated in the current study with the sample calculation 10 + 15. "It took our sugar computer about 40 minutes, but the result was correct," Prof. Schiller says smiling, and clarifies: "It is not our aim to develop a chemical competition to established computer chips." The chemist rather sees the field of application in medical diagnostics. So it is for instance conceivable to connect the chemical analysis of several parameters of blood and urine samples via the molecular logic platform for a final diagnosis and thus enable decisions for therapies.


Story Source:

The above story is based on materials provided by Friedrich Schiller University Jena. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elstner M, Axthelm J, Schiller A. Sugar-based molecular computing via material implication. Angewandte Chemie International Edition, June 2014 DOI: 10.1002/anie.201403769)

Cite This Page:

Friedrich Schiller University Jena. "Sweetest calculator in the world: Sugar molecules used as part of a chemical sequence for information processing." ScienceDaily. ScienceDaily, 19 June 2014. <www.sciencedaily.com/releases/2014/06/140619095605.htm>.
Friedrich Schiller University Jena. (2014, June 19). Sweetest calculator in the world: Sugar molecules used as part of a chemical sequence for information processing. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/06/140619095605.htm
Friedrich Schiller University Jena. "Sweetest calculator in the world: Sugar molecules used as part of a chemical sequence for information processing." ScienceDaily. www.sciencedaily.com/releases/2014/06/140619095605.htm (accessed September 16, 2014).

Share This



More Computers & Math News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FBI Finishes $1 Billion Facial Recognition System

FBI Finishes $1 Billion Facial Recognition System

Newsy (Sep. 15, 2014) — The FBI announced it plans to make its Next Generation Identification System available to law enforcement, but some privacy advocates are worried. Video provided by Newsy
Powered by NewsLook.com
A+ for Apple iPhone Pre-Sales

A+ for Apple iPhone Pre-Sales

Reuters - Business Video Online (Sep. 15, 2014) — Apple says it received a record 4 million first-day pre-orders for its new iPhone 6 and iPhone 6 Plus, pushing delivery dates into October. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft to Buy 'Minecraft' Maker for $2.5B

Microsoft to Buy 'Minecraft' Maker for $2.5B

AP (Sep. 15, 2014) — Microsoft will acquire the maker of the long-running hit game Minecraft for $2.5 billion as the company continues to invest in its Xbox gaming platform and looks to grab attention on mobile phones. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins