Featured Research

from universities, journals, and other organizations

Protecting laptops on the move: Theoretical model for vibrations in laptops provides design strategies for reducing hard drive failures

Date:
June 19, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Laptops have the advantages of being more versatile and portable than their desktop counterparts. But these attributes impose considerable demands on the electronic components in a laptop -- particularly the hard drive. The magnetic disk inside a hard drive rotates at a rate of several thousand revolutions a minute. At the same time, a read/write head moves only a few nanometers above the disk surface to access information on the disk. At such high speeds, large vibrations can permanently damage the hard drive.

Laptops have the advantages of being more versatile and portable than their desktop counterparts. But these attributes impose considerable demands on the electronic components in a laptop -- particularly the hard drive. The magnetic disk inside a hard drive rotates at a rate of several thousand revolutions a minute. At the same time, a read/write head moves only a few nanometers above the disk surface to access information on the disk. At such high speeds, large vibrations can permanently damage the hard drive.

Related Articles


To help reduce hard drive failures, Jianqiang Mou and colleagues from the A*STAR Data Storage Institute in Singapore have now developed a computer model that can predict and minimize the effects of vibrations on the hard drive and ultimately help to improve laptop design1.

Current designs of many laptops actually compound the problems caused by vibrations. For instance, to provide protection from external impact and accidents, laptops are often encased in special housings intended to absorb accidental drops and other shocks. Such laptop designs can actually be counterproductive if not done properly, explains Mou. "The commercial notebook computer industry rarely understands how chassis design can substantially affect the performance of the hard drive. Some notebook computers are designed with vibration sources, for example the loud speaker, located close to the hard drive."

To get back to the fundamentals of laptop design, the researchers developed a theoretical framework that models the propagation of vibrations from various components in a laptop, such as the speakers, to the hard drive. Underpinning this framework are mathematical equations that describe the transmission of vibrations in laptops, and these equations form the input for a computer model applied to specific laptop designs.

The results of the researchers' calculations can be used to inform general laptop design strategies. For example, often very stiff materials are used for laptop cases to provide enhanced mechanical strength. However, stiff materials tend to transmit high-frequency vibrations more strongly than flexible materials, and it is difficult for hard drives to compensate for these frequencies. Softer materials are preferable as they suppress higher frequency vibrations, leaving only slower vibrations which are easier for hard drives to compensate.

"Our study provides an effective approach for computer and hard drive makers to optimize the chassis design and component mounting," adds Mou. "Furthermore, the methodology presented in our paper can be applied for analysis and optimal design of other computer chassis, such as servers in data centers."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Lai, F., Mou, J. Q., See, I. B. L. & Lin, W. Z. Modeling and analysis of notebook computer chassis structure for optimization of component mounting. International Journal of Mechanical Sciences, 76, 60%u201369 (2013)

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Protecting laptops on the move: Theoretical model for vibrations in laptops provides design strategies for reducing hard drive failures." ScienceDaily. ScienceDaily, 19 June 2014. <www.sciencedaily.com/releases/2014/06/140619145933.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, June 19). Protecting laptops on the move: Theoretical model for vibrations in laptops provides design strategies for reducing hard drive failures. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140619145933.htm
The Agency for Science, Technology and Research (A*STAR). "Protecting laptops on the move: Theoretical model for vibrations in laptops provides design strategies for reducing hard drive failures." ScienceDaily. www.sciencedaily.com/releases/2014/06/140619145933.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins