Featured Research

from universities, journals, and other organizations

Cellular gates for sodium, calcium controlled by common element of ancient origin

Date:
July 1, 2014
Source:
Johns Hopkins Medicine
Summary:
Researchers have spotted a strong family trait in two distant relatives: The channels that permit entry of sodium and calcium ions into cells share similar means for regulating ion intake. The new evidence is likely to aid development of drugs for channel-linked diseases ranging from epilepsy to heart ailments to muscle weakness.

All in the family: Sodium channels and calcium channels share common roots.
Credit: Manu Ben-Johny/Johns Hopkins Medicine

Researchers at Johns Hopkins have spotted a strong family trait in two distant relatives: The channels that permit entry of sodium and calcium ions into cells turn out to share similar means for regulating ion intake, they say. Both types of channels are critical to life. Having the right concentrations of sodium and calcium ions in cells enables healthy brain communication, heart contraction and many other processes. The new evidence is likely to aid development of drugs for channel-linked diseases ranging from epilepsy to heart ailments to muscle weakness.

"This discovery was long in coming," says David Yue, M.D., Ph.D., a professor in the Johns Hopkins University School of Medicine's Department of Biomedical Engineering. His team's report, which appears in the June 19 issue of the journal Cell, had its genesis in the 1990s with another group's observation that sodium and calcium channels bear a striking resemblance in a small portion of an otherwise very different structure. "It looked like this 'resemblance element' might be a molecular time capsule derived from a primeval ion channel thought to have birthed distinct sodium and calcium channels a billion years ago," Yue says.

For calcium channels, Yue's and other research groups found that the resemblance element supports an important function, preventing the channel from opening when the cellular calcium level gets high. This prevents too much calcium from building up within cells, much like a thermostat controls household temperatures. This calcium control requires a calcium-sensing molecule called calmodulin, which binds to channels within the resemblance element.

The picture for sodium channels, however, was muddier, with different researchers reporting conflicting findings about whether calmodulin and the resemblance element prevent the opening of sodium channels; perhaps the time capsule was damaged over the millenia or was never there.

Manu Ben-Johny, a graduate student in Yue's laboratory, took up the question. "We thought that the conflicting results for sodium channels might be related to difficulties in existing methods to control the calcium concentrations that might affect these channels," Ben-Johny says.

Looking for a new way to approach the problem, Yue's team bound calcium ions in molecular "cages" that could be opened with a flash of light. This enabled them to "smuggle" calcium ions into cells and see what happened to sodium channels when the calcium concentration changed abruptly. They found that, as with calcium channels, increasing calcium concentrations caused calmodulin to bind within the resemblance element of sodium channels and prevent their opening, just as in calcium channels.

The implications of a common control element in sodium and calcium channels are vast, Yue says, including unified understanding of conditions that spring from defects in the calcium control of these channels. In addition, he says, "Researchers have long sought drugs that modulate sodium and calcium channels in new ways. Targeting the common control element offers a new frontier for developing next-generation pharmaceuticals."

Other authors on the paper are Philemon S. Yang, Jacqueline Niu, Wanjun Yang and Rosy Joshi-Mukherjee, all of The Johns Hopkins University.

This study was funded by the National Institute of Neurological Disorders and Stroke (grant number R01 NS073874) and the National Institute of Mental Health (grant number F31MH088109).


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manu Ben-Johny, PhilemonS. Yang, Jacqueline Niu, Wanjun Yang, Rosy Joshi-Mukherjee, DavidT. Yue. Conservation of Ca2 /Calmodulin Regulation across Na and Ca2 Channels. Cell, 2014; 157 (7): 1657 DOI: 10.1016/j.cell.2014.04.035

Cite This Page:

Johns Hopkins Medicine. "Cellular gates for sodium, calcium controlled by common element of ancient origin." ScienceDaily. ScienceDaily, 1 July 2014. <www.sciencedaily.com/releases/2014/07/140701145533.htm>.
Johns Hopkins Medicine. (2014, July 1). Cellular gates for sodium, calcium controlled by common element of ancient origin. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2014/07/140701145533.htm
Johns Hopkins Medicine. "Cellular gates for sodium, calcium controlled by common element of ancient origin." ScienceDaily. www.sciencedaily.com/releases/2014/07/140701145533.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins