Featured Research

from universities, journals, and other organizations

Research could lead to dramatic energy savings at data farms

Date:
July 2, 2014
Source:
Washington State University
Summary:
Computer scientists have developed a wireless network on a computer chip that could reduce energy consumption at huge data farms by as much as 20 percent.

Scientists designed a miniature cell tower system on the computer chips. Similar to the way a cell phone works, the system includes a tiny, low-power transceiver, on-chip antennas and communication protocols that enable the wireless shortcuts.
Credit: Image courtesy of Washington State University

Washington State University has developed a wireless network on a computer chip that could reduce energy consumption at huge data farms by as much as 20 percent.

Researchers led by Partha Pande, a computer engineering professor in the School of Electrical Engineering and Computer Science, have filed two patents on their wireless multicore chip design, which could also speed up data processing. The team, which includes associate professors Deukhyoun Heo and Benjamin Belzer, has a paper on their work in the May issue of ACM Journal on Emerging Technologies in Computing Systems and is building a prototype.

While portable devices have gone efficiently wireless, the data farms that provide instant availability to text messages, video downloads and more still use conventional metal wires on computer chips. These are incredibly wasteful for relatively long-range data exchange.

With ever growing amounts of data, sustainable computing has become of increasing interest to researchers, industry leaders and the public. As much as 99 percent of the energy for huge data warehouses is lost between the power plant and a customer's iPhone, according to "Reinventing Fire," a book by Amory Lovins and the Rocky Mountain Institute. One data center can consume enough electricity to power a medium-sized town; in 2010, there were more than 2,000 of them in the U.S., according to the New York Times.

The amount of computing that occurs every day is growing exponentially, contributing to significant cost concerns for companies and a strain on resources. Very large data centers are looking for ways to improve efficiency.

Most processors at data centers are multicore, which means they are made up of several processing cores. One of their major performance limitations stems from the multi-hop nature of data exchange. That is, data has to move around several cores through wires, slowing down the processor and wasting energy.

Pande has been working on his idea for a network-on-a-chip technology since receiving his doctorate in 2005. The technology he developed allows for wireless links between cores, resulting in less energy loss and higher data transfer speed.

The architecture uses wireless shortcuts to communicate between distant points on the computer chip. These single-hop shortcuts bypass intermediary nodes and directly connect one node to another.

Pande's team designed a miniature cell tower system on the computer chips. Similar to the way a cell phone works, the system includes a tiny, low-power transceiver, on-chip antennas and communication protocols that enable the wireless shortcuts.

Last year, the researchers acquired state-of the-art equipment to build and test the computer chips, which are some of the smallest and most efficient in the world. The researchers can make chips as small as 28 nanometers. More than 4 billion tiny transistors, which make up the chips, could fit on a period-sized dot.

The researchers are also testing chips that use extremely high frequencies and can transmit data up to 10 times faster than current chips. Transmitting waves at high frequencies requires small chip infrastructures.

The group's work has been funded by the National Science Foundation and the Army Research Office.


Story Source:

The above story is based on materials provided by Washington State University. The original article was written by Tina Hilding. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jacob Murray, Teng Lu, Paul Wettin, Partha Pratim Pande, Behrooz Shirazi. Dual-Level DVFS-Enabled Millimeter-Wave Wireless NoC Architectures. ACM Journal on Emerging Technologies in Computing Systems, 2014; 10 (4): 1 DOI: 10.1145/2600074

Cite This Page:

Washington State University. "Research could lead to dramatic energy savings at data farms." ScienceDaily. ScienceDaily, 2 July 2014. <www.sciencedaily.com/releases/2014/07/140702093614.htm>.
Washington State University. (2014, July 2). Research could lead to dramatic energy savings at data farms. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2014/07/140702093614.htm
Washington State University. "Research could lead to dramatic energy savings at data farms." ScienceDaily. www.sciencedaily.com/releases/2014/07/140702093614.htm (accessed July 22, 2014).

Share This




More Computers & Math News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Plans To Speed Up Web Pages With New Image Format

Google Plans To Speed Up Web Pages With New Image Format

Newsy (July 21, 2014) Google is using compressed images in WebP format to help boost page loading times. The files are 25-to-34 percent smaller than PNGs and JPEGs. Video provided by Newsy
Powered by NewsLook.com
Uruguayan Creates Chess Game for Multiple Opponents

Uruguayan Creates Chess Game for Multiple Opponents

AFP (July 19, 2014) It no longer takes two to play chess – or at least according to a new version of the game invented by Uruguayan Gabriel Baldi, where up to four opponents can play. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Clock Ticks Down on Internet Speed Debate

Clock Ticks Down on Internet Speed Debate

Reuters - US Online Video (July 18, 2014) The FCC received more than 800,000 comments on whether and how internet speeds should be regulated, even crashing its system. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Google Won't Call Games With In-App Add-Ons Free, Apple Will

Google Won't Call Games With In-App Add-Ons Free, Apple Will

Newsy (July 18, 2014) The European Commission asked Google and Apple not to label apps "free" if they include in-app purchases. Google has complied; Apple has resisted. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins