Featured Research

from universities, journals, and other organizations

Finding real value in big data for public health

Date:
July 2, 2014
Source:
San Diego State University
Summary:
Media reports of public health breakthroughs from big data have been largely oversold, according to a new study. But don't throw away that data just yet. The authors maintain that the promise of big data can be fulfilled by tweaking existing methodological and reporting standards. In the study, the research team demonstrate this by revising the inner plumbing of the Google Flu Trends (GFT) digital disease surveillance system, which was heavily criticized last year (see here and here) after producing erroneous forecasts.

A graph depicting Google Flu Trends.
Credit: Image courtesy of San Diego State University

Media reports of public health breakthroughs made possible by big data have been largely oversold, according to a new study, published in the American Journal of Preventive Medicine.

"Many studies deserve praise for being the first of their kind, but if we actually began relying on the claims made by big data surveillance in public health, we would come to some peculiar conclusions," said John W. Ayers, San Diego State University Graduate School of Public Health research professor and senior author of the study. "Some of these conclusions may even pose serious public health harm."

But don't throw away that data just yet.

The authors maintain that the promise of big data can be fulfilled by tweaking existing methodological and reporting standards. In the study, the Ayers and his colleagues demonstrate this by revising the inner plumbing of the Google Flu Trends (GFT) digital disease surveillance system, which was heavily criticized last year (see here and here) after producing erroneous forecasts.

"Assuming you can't use big data to improve public health is simply wrong," added Ayers. "Existing shortcomings are a result of methodologies, not the data themselves."

A solution for Google Flu Trends

In the first external revision proposed to GFT, Ayers and co-researchers David Zhang, Maurcio Santiliana (both with Harvard University), and Benjamin Althouse (with the Santa Fe institute) explored new methods for using open-sourced, publicly available Google search archives to forecast influenza, an approach that can serve as a blueprint to fix broader shortcomings in public health surveillance.

To address GFT's problems, the team significantly beefed up the existing GFT model. First, rather than relying on a single trend that represents a group of influenza search queries, they monitored changes in individual search queries, giving various algorithmic weight to some queries over others based on how they potentially improved predictions compared to patient data collected by health agencies.

Second, instead of relying on investigator opinion for periodic updates to the model, the team built in automatic updating that adjusts the weight given to any single query in the model each and every week based on artificial intelligence techniques to maximize predictive accuracy.

During the 2009 H1N1 pandemic and 2012/13 season -- two critically important periods of influenza surveillance in the United States -- the alternative method yielded more accurate influenza predictions than GFT every week, and was typically more accurate than GFT during other influenza seasons.

"With these tweaks, GFT could live up to the high expectations it originally aspired to," Ayers said. "Still, the greatest strength of our model is how the queries being used to describe influenza trends are changing over time as search patterns change in the population or the model occasional underperforms due to false-positive queries."

For example, during the 2012/2013 season, GFT predicted that 10.6% of the population had influenza like illness when only 6.1% did according to patient records. The team's alternative significantly reduced the error in that prediction, estimating that 7.7% of people would have the flu. And within two weeks the model self-updated, considerably changing the weight given to certain queries that spiked during that time, improving the model for future performance.

What's next for big data

"Big data is no substitute for good methods, and consumers need to better discern good from bad methods," Ayers said. To achieve these ends, he and his colleagues added that digital disease surveillance researchers need greater transparency in the reporting of studies and better methods when using big data in public health.

"When dealing with big data methods, it is extremely important to make sure they are transparent and free," co-author Althouse added. "Reproducibility and validation are keystones of the scientific method, and they should be at the center of the big data revolution."

Importantly, these criticisms shouldn't be taken as an indictment of the promise of big data, or of the early attempts to wrangle it into something beneficial for the public, Ayers said. Now that the initial hype is wearing off, researchers can begin seriously exploring and testing the strengths and limitations of existing models and sharpening their methodologies.

"We certainly don't want any single entity or investigator, let alone Google -- who has been at the forefront of developing and maintaining these systems -- to feel like they are unfairly the targets of our criticism," Ayers said. "It's going to take the entire community recognizing and rectifying existing shortcomings. When we do, big data will certainly yield big impacts."


Story Source:

The above story is based on materials provided by San Diego State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mauricio Santillana, D. Wendong Zhang, Benjamin M. Althouse, John W. Ayers. What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends? American Journal of Preventive Medicine, 2014; DOI: 10.1016/j.amepre.2014.05.020

Cite This Page:

San Diego State University. "Finding real value in big data for public health." ScienceDaily. ScienceDaily, 2 July 2014. <www.sciencedaily.com/releases/2014/07/140702122432.htm>.
San Diego State University. (2014, July 2). Finding real value in big data for public health. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/07/140702122432.htm
San Diego State University. "Finding real value in big data for public health." ScienceDaily. www.sciencedaily.com/releases/2014/07/140702122432.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com
Google To Protect Against Piracy ... At A Cost

Google To Protect Against Piracy ... At A Cost

Newsy (Oct. 20, 2014) Google is changing its search-engine results to protect content producers from piracy — for a price. Video provided by Newsy
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins