Featured Research

from universities, journals, and other organizations

New technology reveals insights into mechanisms underlying amyloid diseases

Date:
July 10, 2014
Source:
IOS Press BV
Summary:
Amyloid diseases, such as Alzheimer's disease, type 2 diabetes, cataracts, and the spongiform encephalopathies, all share the common trait that proteins aggregate into long fibers which then form plaques. Yet in vitro studies have found that neither the amylin monomer precursors nor the plaques themselves are very toxic. New evidence using two-dimensional infrared (2D IR) spectroscopy has revealed an intermediate structure during the amylin aggregation pathway that may explain toxicity, opening a window for possible interventions, according to a report.

This is a schematic of the intermediate structure in the aggregation pathway of amylin.
Credit: Zhang, Buchanan, Zanni, Biomedical Spectroscopy and Imaging

Amyloid diseases, such as Alzheimer's disease, type 2 diabetes, cataracts, and the spongiform encephalopathies, all share the common trait that proteins aggregate into long fibers which then form plaques. Yet in vitro studies have found that neither the amylin monomer precursors nor the plaques themselves are very toxic. New evidence using two-dimensional infrared (2D IR) spectroscopy has revealed an intermediate structure during the amylin aggregation pathway that may explain toxicity, opening a window for possible interventions, according to a report in the current issue of Biomedical Spectroscopy and Imaging.

"Figuring out how and why amyloid plaques form is exceedingly difficult, because one needs to follow the atomic shapes of the protein molecules as they assemble. Most tools in biology give either shapes or motions, but not both. We have been developing a new spectroscopic tool, called two-dimensional infrared spectroscopy, which can monitor the plaques as they form in a test tube," said lead investigator Martin T. Zanni, PhD, of the Department of Chemistry at the University of Wisconsin-Madison.

The investigators employed this new technology to study the amyloid protein associated with type 2 diabetes. Isotope labeling was used to measure the secondary structure content of individual residues. By following many 2D IR spectra from one particular region (known as the FGAIL region) over several hours, they were able to visualize the amylin as it progressed from monomers to fibers.

"We learned that, prior to making the plaques, the proteins first assemble into an unexpected and intriguing intermediate and organized structure," commented Dr. Zanni. The proteins undergo a transition from disordered coil (in the monomer), to ordered β-sheet (in the oligomer) to disordered structure again (in the fiber).

These results help to elucidate the physics of the aggregation process, the chemistry of amyloid inhibitors, and the biology of type 2 diabetes, as well as clarify previously contradictory data.

The authors suggest that differences between species in their capacity to develop type 2 diabetes may be related to the capacity to form these intermediate amylin structures. That may be why humans develop the disease while dogs and rats do not. "I am not encouraging us to begin engineering our DNA to match that of rats, but our findings may help to develop plaque inhibitors or hormone replacement therapies for people suffering from type 2 diabetes, because we know the structure we want to avoid," says Dr. Zanni. He adds that mutations in the FGAIL region may inhibit fiber formation by interfering with the formation of these intermediates.


Story Source:

The above story is based on materials provided by IOS Press BV. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tianqi O. Zhang, Lauren E. Buchanan, Martin T. Zanni. Insights into amylin aggregation by 2D IR spectroscopy. Biomedical Spectroscopy and Imaging, July 2014 DOI: 10.3233/BSI-140078

Cite This Page:

IOS Press BV. "New technology reveals insights into mechanisms underlying amyloid diseases." ScienceDaily. ScienceDaily, 10 July 2014. <www.sciencedaily.com/releases/2014/07/140710130618.htm>.
IOS Press BV. (2014, July 10). New technology reveals insights into mechanisms underlying amyloid diseases. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/07/140710130618.htm
IOS Press BV. "New technology reveals insights into mechanisms underlying amyloid diseases." ScienceDaily. www.sciencedaily.com/releases/2014/07/140710130618.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Reasons Why Teen Birth Rates Are At An All-Time Low

Reasons Why Teen Birth Rates Are At An All-Time Low

Newsy (Aug. 20, 2014) A CDC report says birth rates among teenagers have been declining for decades, reaching a new low in 2013. We look at several popular explanations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins