Featured Research

from universities, journals, and other organizations

New avenues in search for Alzheimer’s cure

Date:
July 14, 2014
Source:
American Technion Society
Summary:
Researchers shed new light on key mechanism in accumulation of protein plaques in Alzheimer’s disease patients, which could open new avenues for developing a cure for Alzheimer's disease, which affects 5.2 million in the U.S. alone. The researchers' breakthrough findings are centered on UBB +1, a mutation prevalent in Alzheimer's disease patients. The mutation impairs a protein called ubiquitin that marks other proteins to be dismantled at the proteasome.

Alzheimer's disease affects approximately 5.2 million people in the United States alone, and it is the nation's sixth leading cause of death. A cure for this insidious killer has so far proven elusive, but that could soon change as a result of a breakthrough at the Technion-Israel Institute of Technology that sheds light on a key mechanism in the accumulation of protein plaques in the tissue of Alzheimer's disease patients.

The findings were published online last week in Nature Chemical Biology.

"Proteins that constitute major building blocks of our body cells continuously pass through quality control," explains team leader Prof. Michael Glickman, of the Faculty of Biology. "Defective proteins are sent to the proteasome, a molecular machine (found in all of our cells) that eliminates defective proteins by recycling them back to their building blocks. But a small number of them slip through this process. Proteins that evade the proteasome accumulate, and may be harmful when they reach a critical mass, which is often the case at an advanced age."

The researchers' breakthrough findings are centered on UBB +1, a mutation prevalent in Alzheimer's disease patients. The mutation impairs a protein called ubiquitin that marks other proteins to be dismantled at the proteasome.

Previously, the prevailing view among scientists was that UBB +1 impairs the functioning of the proteasome itself. But in her doctoral dissertation under the guidance of Prof. Glickman, Dr. Daria Krutauz found that in the presence of UBB+1, damaged proteins are apprehended on their way to the proteasome, and accumulate without reaching their final recycling destination. As a result, they have more opportunity to form the deadly plaque associated with Alzheimer's disease.

"Because our findings run contrary to what was previously believed, this discovery opens new venues for intervention in the hope of developing a cure for Alzheimer's disease," says Prof. Glickman.


Story Source:

The above story is based on materials provided by American Technion Society. The original article was written by Kevin Hattori. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daria Krutauz, Noa Reis, Mark A Nakasone, Peter Siman, Daoning Zhang, Donald S Kirkpatrick, Steven P Gygi, Ashraf Brik, David Fushman, Michael H Glickman. Extended ubiquitin species are protein-based DUB inhibitors. Nature Chemical Biology, 2014; DOI: 10.1038/nchembio.1574

Cite This Page:

American Technion Society. "New avenues in search for Alzheimer’s cure." ScienceDaily. ScienceDaily, 14 July 2014. <www.sciencedaily.com/releases/2014/07/140714122610.htm>.
American Technion Society. (2014, July 14). New avenues in search for Alzheimer’s cure. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/07/140714122610.htm
American Technion Society. "New avenues in search for Alzheimer’s cure." ScienceDaily. www.sciencedaily.com/releases/2014/07/140714122610.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins