Featured Research

from universities, journals, and other organizations

New method created to draw molecules from live cells

Date:
July 17, 2014
Source:
University of Houston
Summary:
A new method for extracting molecules from live cells without disrupting cell development has been devised by scientists, work that could provide new avenues for the diagnosis of cancer and other diseases. The researchers used magnetized carbon nanotubes to extract biomolecules from live cells, allowing them to retrieve molecular information without killing the individual cells.

A. An external magnetic field drives magnetic carbon nanotubes toward a cell cultured on a polycarbonate filter. To indicate the molecular extraction, the cell is transfected for GFP overexpression beforehand. B. MCNTs spear into the cell under magnetic force. C. MCNTs spear through and out of the cell and extract GFP. GFP-carrying spears are collected in the pores of a polycarbonate filter. D. GFP representing the intracellular signal molecules can be used for analysis of individual pores.
Credit: University of Houston

University of Houston researchers have devised a new method for extracting molecules from live cells without disrupting cell development, work that could provide new avenues for the diagnosis of cancer and other diseases.

Related Articles


The researchers used magnetized carbon nanotubes to extract biomolecules from live cells, allowing them to retrieve molecular information without killing the individual cells. A description of the work appears this week in the Proceedings of the National Academy of Sciences.

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time, said Zhifeng Ren, M.D. Anderson Chair professor of physics and principal investigator at the Center for Superconductivity at UH and lead author of the paper. The work was a collaboration between Ren's lab and that of Paul Chu, T.L.L. Temple Chair of Science and founding director of the Texas Center for Superconductivity.

Other key researchers on the project included Xiaoliu Zhang, a cancer researcher with the UH Center for Nuclear Receptors and Cell Signaling, and Dong Cai, assistant professor of physics.

Chu, a co-author of the paper, said the new technique will allow researchers to draw fundamental information from a single cell.

"Now, (most) techniques break up many cells to extract the material inside the cells, so what you get is the average over many cells," he said. "The individual cells may be different, but you cannot see exactly how they function."

The researchers said the steps outlined in the paper offer proof of concept. Ren said the next step "will be more study of the biological and chemical processes of the cell, more analysis."

The initial results hold promise for biomedicine, he said. "This shows how nanoscience and nanoengineering can help the medical field."

Cai said the new method will be helpful for cancer drug screening and carcinogenesis study, as well as for studies that allow researchers to obtain information from single cells, replacing previous sampling methods that average out cellular diversity and obscure the specificity of the biomarker profiles.

In the paper, the researchers explain their rationale for the work -- most methods for extracting molecular information result in cell death, and those that do spare the cell carry special challenges, including limited efficiency.

This method is relatively straightforward, requiring the use of magnetized carbon nanotubes as the transporter and a polycarbonate filter as a collector, they report. Cells from a human embryonic kidney cancer cell line were used for the experiment.

The work builds on a 2005 paper published by Ren's group in Nature Methods, which established that magnetized carbon nanotubes can deliver molecular payloads into cells. The current research takes that one step further to move molecules out of cells by magnetically driving them through the cell walls. The carbon nanotubes were grown with a plasma-enhanced chemical vapor deposition system, with magnetic nickel particles enclosed at the tips. A layer of nickel was also deposited along the surface of individual nanotubes in order to make the nanotubes capable of penetrating a cell wall guided by a magnet.


Story Source:

The above story is based on materials provided by University of Houston. The original article was written by Jeannie Kever. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Yang, L. Deng, Y. Lan, X. Zhang, Z. Gao, C.-W. Chu, D. Cai, Z. Ren. Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1411802111

Cite This Page:

University of Houston. "New method created to draw molecules from live cells." ScienceDaily. ScienceDaily, 17 July 2014. <www.sciencedaily.com/releases/2014/07/140717114937.htm>.
University of Houston. (2014, July 17). New method created to draw molecules from live cells. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2014/07/140717114937.htm
University of Houston. "New method created to draw molecules from live cells." ScienceDaily. www.sciencedaily.com/releases/2014/07/140717114937.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Calif. Health Officials Campaign Against E-Cigarettes

Calif. Health Officials Campaign Against E-Cigarettes

Newsy (Jan. 29, 2015) The California Health Department says e-cigarettes are a public health risk for both smokers and those who inhale e-cig smoke secondhand. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins