Featured Research

from universities, journals, and other organizations

Diagnostic criteria for Christianson Syndrome

Date:
July 21, 2014
Source:
Brown University
Summary:
A new study provides the most definitive characterization of the autism-like intellectual disability disorder Christianson Syndrome and provides the first diagnostic criteria to help doctors and families identify and understand the condition. Initial evidence suggests CS could affect tens of thousands of boys worldwide.

These scans show atrophy of the cerebellum in a boy with Christianson Syndrome. This symptom was observed in some, but not all boys, with the condition.
Credit: Eric Morrow/Brown University

Because the severe autism-like condition Christianson Syndrome was only first reported in 1999 and some symptoms take more than a decade to appear, families and doctors urgently need fundamental information about it. A new study that doubles the number of cases now documented in the scientific literature provides the most definitive characterization of CS to date. The authors therefore propose the first diagnostic criteria for the condition.

Related Articles


"We're hoping that clinicians will use these criteria and that there will be more awareness among clinicians and the community about Christianson Syndrome," said Brown University biology and psychiatry Assistant Professor Dr. Eric Morrow, senior author of the study in press in the Annals of Neurology. "We're also hoping this study will impart an opportunity for families to predict what to expect for their child and what's a part of the syndrome."

In conducting their study, which includes detailed behavioral, medical and genetic observations of 14 boys with CS from 12 families, the team of scientists and physicians worked closely with families of the small but fast-growing Christianson Syndrome Association , including hosting the group's inaugural conference at Brown's Alpert Medical School last summer.

In their study, Morrow's team was able to quantify the most frequent symptoms specific to CS. These include moderate to severe intellectual disability, epilepsy, difficulty or inability walking and talking, attenuated head and brain growth, and hyperactivity. Boys sometimes exhibit other specific symptoms -- including autism-like behaviors, low height and weight, acid reflux, and regressions in speech and motor skills after age 10 -- that the researchers include as secondary proposed diagnostic criteria. A third of the boys also had potentially neurodegenerative problems such as atrophy of the cerebellum.

What's still not clear is whether the disease limits the eventual lifespan of patients.

Distinct genetic cause

Many CS traits, including a very happy disposition, appear similar to those of another autism-like condition, Angelman Syndrome, but the study defines important differences.

Among the most important ones is that the two syndromes have distinct genetic underpinnings. In all CS cases, said Morrow who treats autism patients at the E. P. Bradley Hospital in East Providence, boys have a mutation on the SLC9A6 gene on the X chromosome that disables production of a protein called NHE6 that is important for neurological development.

Girls, who have two X chromosomes, can also be carriers of CS mutations, but they appear to be affected differently and less severely or not at all, the study reports.

The connection to the SLC9A6 gene was first discovered in 2008. In analyzing the genomes of each patient and their parents in the new study, lead authors Matthew Pescosolido, a graduate student, and David Stein, a former undergraduate, found that each boy had only one mutation, but there were many different ones across the entire group. More often than not, they determined, the mutation was not inherited, but an unlucky "de novo" change that occurred in the affected boy. In two situations, boys in unrelated families happened to share the same mutation. These recurrent mutations suggest that there may be hotspots in the DNA for mutation at these sites, Morrow said, although further research will be necessary to sort this out.

Morrow said there is evidence that SLC9A6 mutations -- and therefore CS -- may be a relatively common source of X-linked intellectual disability. One study, for example found that SLC9A6 mutations in two of 200 people suspected of having X-linked ID. Another found that 1 in 19 families with a case of ID exhibited a mutation that truncated the NHE6 protein.

"If we assume that between 1-3 percent of the world's population is diagnosed with an intellectual disability and approximately 10-20 percent of the causes are due to X-linked genes, then we can estimate that CS may affect between 1 in 16,000 to 100,000 people," Morrow and his co-authors wrote. Worldwide that frequency would add up to more than 70,000 cases.

Relevance to autism, epilepsy

In a paper published last year, Morrow's research group found that NHE6 is underexpressed in the brains of many children with more general forms of autism. This potential connection suggests that learning about CS can help doctors and scientists learn about autism.

Similarly by studying the regression of walking and verbal skills among Christianson boys, Morrow said researchers could learn more about regressions in autism.

"Christianson syndrome, I hope will be a model," Morrow said. "If we could understand the biological mechanism that leads to that loss, and we can prevent it, by developing a treatment, then these kids will remain further ahead."

Such advances will require much more study, but Morrow said that by uncovering a variety of mutations that all lead to the disease, the study provides a wealth of new information for that work.

"We can now study these different mutations and learn how this protein works by how it gets inactivated," he said. "All the different ways it gets inactivated can actually inform us about the different components of the protein that have an important function."


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew F. Pescosolido, David M. Stein, Michael Schmidt, Christelle Moufawad El Achkar, Mark Sabbagh, Jeffrey M. Rogg, Umadevi Tantravahi, Rebecca L. McLean, Judy S. Liu, Annapurna Poduri, Eric M. Morrow. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Annals of Neurology, 2014; DOI: 10.1002/ana.24225

Cite This Page:

Brown University. "Diagnostic criteria for Christianson Syndrome." ScienceDaily. ScienceDaily, 21 July 2014. <www.sciencedaily.com/releases/2014/07/140721100416.htm>.
Brown University. (2014, July 21). Diagnostic criteria for Christianson Syndrome. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/07/140721100416.htm
Brown University. "Diagnostic criteria for Christianson Syndrome." ScienceDaily. www.sciencedaily.com/releases/2014/07/140721100416.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins