Featured Research

from universities, journals, and other organizations

Discovery is key to metal wear in sliding parts

Date:
July 24, 2014
Source:
Purdue University
Summary:
Researchers have discovered a previously unknown mechanism for wear in metals: a swirling, fluid-like microscopic behavior in a solid piece of metal sliding over another. The findings could be used to improve the durability of metal parts in numerous applications.

This sequence of images reveals surprising fluid-like behavior in a solid piece of metal sliding over another, forming defects leading to wear in metal parts. (Top) Two image frames of the material flow showing how these defects are spawned in the wake of the contact. (Bottom) Scanning electron microscope pictures of the corresponding wear surfaces showing a tear and a crack. Wear particles are formed when the tears and cracks detach from the surfaces.
Credit: Purdue University School of Industrial Engineering image/Anirban Mahato

Researchers have discovered a previously unknown mechanism for wear in metals: a swirling, fluid-like microscopic behavior in a solid piece of metal sliding over another.

The findings could be used to improve the durability of metal parts in numerous applications.

"Wear is a major cause of failure in engineering applications," said Srinivasan Chandrasekar, a Purdue University professor of industrial engineering and materials engineering. "However, our findings have implications beyond wear itself, extending to manufacturing and materials processing."

The findings are the result of a collaboration of researchers from Purdue, the Indian Institute of Science in Bangalore, India, and M4 Sciences, a company in West Lafayette, Indiana.

"Using high-resolution imaging of sliding contacts in metals, we have demonstrated a new way by which wear particles and surface defects can form," said Purdue postdoctoral research associate Anirban Mahato, who is working with Chandrasekar; Narayan Sundaram, an assistant professor at the Indian Institute of Science; and Yang Guo, a research scientist at M4 Sciences.

Findings are detailed in a research paper to appear Wednesday (July 23) in Proceedings of the Royal Society A, a publication of the Royal Society in the United Kingdom.

The researchers, using a microscope, high-speed camera and other tools, had previously revealed the formation of bumps, folds and vortex-like features on sliding metal surfaces. The new findings build on the previous paper, published in 2012 in Physical Review Letters, to show how the behavior leads to cracks and wear particles.

The findings were counter-intuitive because the experiment was conducted at room temperature, and the sliding conditions did not generate enough heat to soften the metal. Yet, the swirling flow is more like behavior seen in fluids than in solids, Chandrasekar said.

The team observed what happens when a wedge-shaped piece of steel slides over a flat piece of aluminum or copper. The metals are commonly used to model the mechanical behavior of metals.

"We speculated in the earlier paper that the swirly fluid-like surface flow discovered on sliding metal surfaces is likely to impact wear in sliding metal systems," he said. "Now we areconfirming this speculation by direct observations."

The observations show how tiny bumps form in front of the wedge, followed by the swirling movement. When the wedge angle is shallow, the flow is laminar, or smooth. However, it changes to a swirly flow when the angle is adjusted to a less-shallow angle, mimicking what happens in actual sliding metal parts.As the wedge slides across the metal specimen, folds form between the bumps, and then the folds transform into tears and cracks in the wake of the wedge, eventually falling off as wear particles.

"A single sliding pass is sufficient to damage the surface, and subsequent passes result in the generation of platelet-like wear particles," Chandrasekar said.

The behavior was captured in movies that show the flow in color-coded layers just below the surfaces of the copper and aluminum specimens.

The defects range in size from 5 to 25 microns and are similar to those found in sliding components such as parts in automotive engines, compressors and numerous types of equipment and machinery.

"In the past we only saw these features after they had formed, and we attributed them to various possible mechanisms," he said. "Here, we show a mechanism for how they are formed. The defect features observed also occur in surfaces created by manufacturing processes like grinding, polishing, burnishing, peening, drawing, extrusion, rolling, and so on, which are all commonly used in making structural and mechanical components in the ground transportation, aerospace, sheet- and wire-metals processing, and energy systems sectors."

Ongoing research will explore potential routes to reduce wear arising from this type of mechanism. Metals are made of groups of crystals called grains. Future work will study how a material's grain size and ductility influence this type of wear, how these types of surface defects in manufacturing processes can be eliminated through the modified design of tools and dies, improved models for sliding wear and wear-control strategies.

"We want to look at this mechanism in materials that have smaller crystals -- in the 5-30 micron range," Chandrasekar said. "We want to show that the mechanism is more general and extends down to even finer-grained metals."

The researchers also have developed a theory and simulation for the mechanism. The work has been funded by the U.S. Army Research Office and the National Science Foundation.

Two videos showing the swirly flow and wear-particle formation, respectively, are available at https://www.youtube.com/watch?v=QE-PrRc5IWw&feature=youtu.be and https://www.youtube.com/watch?v=VT_i14Y01FM&feature=youtu.be


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Mahato, Y. Guo, N. K. Sundaram, S. Chandrasekar. Surface folding in metals: a mechanism for delamination wear in sliding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014; 470 (2169): 20140297 DOI: 10.1098/rspa.2014.0297

Cite This Page:

Purdue University. "Discovery is key to metal wear in sliding parts." ScienceDaily. ScienceDaily, 24 July 2014. <www.sciencedaily.com/releases/2014/07/140724094320.htm>.
Purdue University. (2014, July 24). Discovery is key to metal wear in sliding parts. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/07/140724094320.htm
Purdue University. "Discovery is key to metal wear in sliding parts." ScienceDaily. www.sciencedaily.com/releases/2014/07/140724094320.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins