Featured Research

from universities, journals, and other organizations

Gene changes in breast cancer cells pinpointed with new computational method

Date:
July 24, 2014
Source:
Carnegie Mellon University
Summary:
Computer scientists working with high-throughput data generated by breast cancer biologists have devised a computational method to determine how gene networks are rewired as normal breast cells turn malignant and as they respond to potential cancer therapy agents.

Computer scientists at Carnegie Mellon University, working with high-throughput data generated by breast cancer biologists at Lawrence Berkeley National Laboratory, have devised a computational method to determine how gene networks are rewired as normal breast cells turn malignant and as they respond to potential cancer therapy agents.

This method for analyzing how genes interact with each other in laboratory-grown cells is described in a report published by the online journal PLOS Computational Biology.

The method could provide new insights into cancer and identify the most promising molecular targets for drug therapy. In their study, for instance, the researchers were able to show how changes in these gene networks led breast cancer cells to develop resistance to several different agents being evaluated as drugs for targeted therapy.

"With our system, pharmaceutical developers wouldn't need to go to expensive clinical trials to discover that a drug isn't going to work," said Wei Wu, associate research professor in CMU's Lane Center for Computational Biology. "It could save them a tremendous amount of money and a tremendous amount of time."

The approach also might be used to detect differences in gene regulation between individuals, helping physicians select which treatment will be most effective for each patient, she added.

Wu and Eric P. Xing, associate professor of machine learning, worked with Mina Bissell, a breast cancer researcher at the Berkeley Lab, to investigate whether distinctly different gene regulatory networks could be identified within cells as normal cells become malignant and as the malignant cells respond to various drug treatments. The researchers studied these breast cancer cells using a 3D cell culturing technique developed by Bissell's laboratory.

These networks can be inferred based on microarrays, which measure the expression levels of tens of thousands of genes in a cell. But the number of microarrays that investigators can afford to run for each cell state -- normal cells, malignant cells and malignant cells that have reverted to normal-looking cells that also are organized normally -- is limited. So researchers often pool microarray data from several cell states in hopes of gaining enough samples to draw solid conclusions about networks, Wu said.

That approach wouldn't work in a study that sought to differentiate between the various cell states. But Xing's research group had developed a computational method called Treegl that can detect multiple networks by examining the relationships between the cell types. The method pools microarray data to build statistical power in similar samples in which the gene regulatory networks appear similar while also taking the differences into account.

In this way, the researchers were able to identify different signaling networks with just three microarrays for each of five cell states -- normal, malignant and three types of reverted cells.

Though the reverted cells looked physically normal in culture, Wu said their signaling pathways differed not only from the malignant cells, but also the normal cells. In fact, each had distinctly different signaling pathways depending on what drug had been used to treat them, as each compensated for the effects of the drugs in different ways.

In the case of cells that had been treated with MMP inhibitors, the researchers could see how the rewired signaling pathways had created compensatory signaling which would cause them to resist the drug -- an effect that would explain why cancer patients receiving MMP inhibitors in clinical trials show either poor survival or no survival benefit, Wu said.

Wu also said by using this approach for studying cancer cells, it should be possible to eliminate drugs that appear promising but are ultimately flawed earlier in the development process. It also might result in clinical trials that require fewer patients and less time to complete, she added. Differences in gene regulatory networks in patients also might be used as the basis for personalized medicine.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ankur P. Parikh, Ross E. Curtis, Irene Kuhn, Sabine Becker-Weimann, Mina Bissell, Eric P. Xing, Wei Wu. Network Analysis of Breast Cancer Progression and Reversal Using a Tree-Evolving Network Algorithm. PLoS Computational Biology, 2014; 10 (7): e1003713 DOI: 10.1371/journal.pcbi.1003713

Cite This Page:

Carnegie Mellon University. "Gene changes in breast cancer cells pinpointed with new computational method." ScienceDaily. ScienceDaily, 24 July 2014. <www.sciencedaily.com/releases/2014/07/140724144245.htm>.
Carnegie Mellon University. (2014, July 24). Gene changes in breast cancer cells pinpointed with new computational method. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2014/07/140724144245.htm
Carnegie Mellon University. "Gene changes in breast cancer cells pinpointed with new computational method." ScienceDaily. www.sciencedaily.com/releases/2014/07/140724144245.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins