Featured Research

from universities, journals, and other organizations

Newly discovered heart molecule could lead to effective treatment for heart failure

Date:
August 10, 2014
Source:
Indiana University
Summary:
Researchers have discovered a previously unknown cardiac molecule that could provide a key to treating, and preventing, heart failure. The newly discovered molecule provides the heart with a tool to block a protein that orchestrates genetic disruptions when the heart is subjected to stress, such as high blood pressure.

Researchers led by a team at Indiana University School of Medicine have discovered a cardiac compound that could lead to new treatment for heart failure.
Credit: Image courtesy of Indiana University

Researchers have discovered a previously unknown cardiac molecule that could provide a key to treating, and preventing, heart failure.

Related Articles


The newly discovered molecule provides the heart with a tool to block a protein that orchestrates genetic disruptions when the heart is subjected to stress, such as high blood pressure.

When the research team, led by Ching-Pin Chang, M.D., Ph.D., associate professor of medicine at the Indiana University School of Medicine, restored levels of the newly discovered molecule in mice experiencing heart failure, the progression to heart failure was stopped. The research was published in the online edition of the journal Nature.

The newly discovered molecule is known as a long non-coding RNA. RNA's usual role is to carry instructions -- the code -- from the DNA in a cell's nucleus to the machinery in the cell that produces proteins necessary for cell activities. In recent years, scientists have discovered several types of RNA that are not involved in protein coding but act on their own. The role in the heart of long non-coding RNA has been unknown.

But the researchers determined that the newly discovered non-coding RNA, which they named Myheart -- for myosin heavy-chain-associated RNA transcript -- is responsible for controlling a protein called BRG1 (pronounced "berg-1"). In earlier research published in Nature in 2010, Dr. Chang and his colleagues discovered that BRG1 plays a crucial role in the development of the heart in the fetus.

But as the heart grows and needs to mature into its adult form, BRG1 is no longer needed, so very little of it is produced. That is, until the adult heart is subjected to significant stress such as high blood pressure or damage from a heart attack. Dr. Chang's previous research showed that in those conditions, BRG1 re-emerges and begins altering the heart's genetic activity, leading to heart failure. At the same time, production of Myheart is suppressed, so BRG1 can latch onto the DNA and alter the genetic material unchecked.

In the current Nature paper, the researchers reported that in mice with stress-induced high levels of BRG1, they were able to restore Myheart to normal levels using gene transfer technology. Restoring Myheart levels blocked BRG1 actions and prevented heart failure, they said.

"I think of Myheart as a molecular crowbar that pries BRG1 off the genomic DNA and prevents it from manipulating genetic activity," said Dr. Chang, director of molecular and translational medicine at the Krannert Institute of Cardiology.

Although the results in mice would suggest testing Myheart against heart failure in humans, it is too large -- by molecular standards -- to be delivered as a drug, Dr. Chang said.

So he and his colleagues now are working to identify smaller portions of the Myheart molecule that are key to its ability to block BRG1. Such a subsection of the Myheart molecule could lead to a compound to test in human trials.


Story Source:

The above story is based on materials provided by Indiana University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pei Han, Wei Li, Chiou-Hong Lin, Jin Yang, Ching Shang, Sylvia T. Nuernberg, Kevin Kai Jin, Weihong Xu, Chieh-Yu Lin, Chien-Jung Lin, Yiqin Xiong, Huan-Chieh Chien, Bin Zhou, Euan Ashley, Daniel Bernstein, Peng-Sheng Chen, Huei-Sheng Vincent Chen, Thomas Quertermous, Ching-Pin Chang. A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 2014; DOI: 10.1038/nature13596

Cite This Page:

Indiana University. "Newly discovered heart molecule could lead to effective treatment for heart failure." ScienceDaily. ScienceDaily, 10 August 2014. <www.sciencedaily.com/releases/2014/08/140810214158.htm>.
Indiana University. (2014, August 10). Newly discovered heart molecule could lead to effective treatment for heart failure. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/08/140810214158.htm
Indiana University. "Newly discovered heart molecule could lead to effective treatment for heart failure." ScienceDaily. www.sciencedaily.com/releases/2014/08/140810214158.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins