Featured Research

from universities, journals, and other organizations

Eye implant could lead to better glaucoma treatments

Date:
August 26, 2014
Source:
Stanford University
Summary:
Lowering internal eye pressure is currently the only way to treat glaucoma. A tiny eye implant recently developed could pair with a smartphone to improve the way doctors measure and lower a patient's eye pressure. Daily or hourly measurements of eye pressure could help doctors tailor more effective treatment plans.

For the 2.2 million Americans battling glaucoma, the main course of action for staving off blindness involves weekly visits to eye specialists who monitor -- and control -- increasing pressure within the eye.

Related Articles


Now, a tiny eye implant developed at Stanford could enable patients to take more frequent readings from the comfort of home. Daily or hourly measurements of eye pressure could help doctors tailor more effective treatment plans.

Internal optic pressure (IOP) is the main risk factor associated with glaucoma, which is characterized by a continuous loss of specific retina cells and degradation of the optic nerve fiber. The mechanism linking IOP and the damage is not clear, but in most patients IOP levels correlate with the rate of damage.

Reducing IOP to normal or below-normal levels is currently the only treatment available for glaucoma. This requires repeated measurements of the patient's IOP until the levels stabilize. The trick with this, though, is that the readings do not always tell the truth.

Like blood pressure, IOP can vary day-to-day and hour-to-hour; it can be affected by other medications, body posture or even a neck-tie that is knotted too tightly. If patients are tested on a low IOP day, the test can give a false impression of the severity of the disease and affect their treatment in a way that can ultimately lead to worse vision.

The new implant was developed as part of a collaboration between Stephen Quake, a professor of bioengineering and of applied physics at Stanford, and ophthalmologist Yossi Mandel of Bar-Ilan University in Israel. It consists of a small tube -- one end is open to the fluids that fill the eye; the other end is capped with a small bulb filled with gas. As the IOP increases, intraocular fluid is pushed into the tube; the gas pushes back against this flow.

As IOP fluctuates, the meniscus -- the barrier between the fluid and the gas -- moves back and forth in the tube. Patients could use a custom smartphone app or a wearable technology, such as Google Glass, to snap a photo of the instrument at any time, providing a critical wealth of data that could steer treatment. For instance, in one previous study, researchers found that 24-hour IOP monitoring resulted in a change in treatment in up to 80 percent of patients.

The implant is currently designed to fit inside a standard intraocular lens prosthetic, which many glaucoma patients often get when they have cataract surgery, but the scientists are investigating ways to implant it on its own.

"For me, the charm of this is the simplicity of the device," Quake said. "Glaucoma is a substantial issue in human health. It's critical to catch things before they go off the rails, because once you go off, you can go blind. If patients could monitor themselves frequently, you might see an improvement in treatments."

Remarkably, the implant won't distort vision. When subjected to the vision test used by the U.S. Air Force, the device caused nearly no optical distortion, the researchers said.

Before they can test the device in humans, however, the scientists say they need to re-engineer the device with materials that will increase the life of the device inside the human eye. Because of the implant's simple design, they expect this will be relatively achievable.

"I believe that only a few years are needed before clinical trials can be conducted," said Mandel, head of the Ophthalmic Science and Engineering Laboratory at Bar-Ilan University, who collaborated on developing the implant.

The work is published in the current issue of Nature Medicine.


Story Source:

The above story is based on materials provided by Stanford University. The original article was written by Bjorn Carey. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ismail E Araci, Baolong Su, Stephen R Quake, Yossi Mandel. An implantable microfluidic device for self-monitoring of intraocular pressure. Nature Medicine, 2014; DOI: 10.1038/nm.3621

Cite This Page:

Stanford University. "Eye implant could lead to better glaucoma treatments." ScienceDaily. ScienceDaily, 26 August 2014. <www.sciencedaily.com/releases/2014/08/140826091057.htm>.
Stanford University. (2014, August 26). Eye implant could lead to better glaucoma treatments. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/08/140826091057.htm
Stanford University. "Eye implant could lead to better glaucoma treatments." ScienceDaily. www.sciencedaily.com/releases/2014/08/140826091057.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins