Featured Research

from universities, journals, and other organizations

Early Marrow Transplant May Cure SIDS

June 4, 1997
Johns Hopkins Children's Center
A 15-year study at Duke University has shown that babies born with Severe Combined Immunodeficiency (SCID) have a greater than 90 percent chance of being cured if they are given a bone marrow transplant within three months of birth.

Related Articles

Now, researchers at Duke University Medical Center are reporting that the disease, known as
severe combined immune deficiency (SCID), can be cured in many cases if diagnosed and treated
early enough.

A 15-year study by Duke physicians shows that more than 90 percent of babies born with the
disorder can be given a healthy immune system if they receive a bone marrow transplant within three
months of birth. They also have learned that these children need not have a perfectly matched donor,
but can use a parent's "half-matched" marrow. Furthermore, the babies do not need toxic pre-transplant chemotherapy, as is often thought and currently practiced.

The results of the study of 79 children were presented last month at the Pediatric Academic Societies' annual meeting. Duke is one of only a few hospitals in the country that specializes in treating children with SCID.

"This once-fatal disease should be now seen as a pediatric emergency, a condition that needs
immediate diagnosis and treatment," said Dr. Rebecca Buckley, chief of Duke's division of pediatric
allergy and immunology.

Buckley said early diagnosis of SCID is rare because doctors do not routinely perform a test in
newborns to count white blood cells. Such a blood test could pick up children with SCID as well as
those with other serious immune deficiencies that would not be apparent until the child developed an infection. "A simple blood test could allow us to treat, and most likely cure, SCID in a child for as little as $25,000," Buckley said. "If found later, less effective treatment can run into the millions."

Babies born with SCID suffer from a variety of genetic defects, all leading to a lack of T or B
immune cell function, which is essential for protection against infection. The defect is said to occur
once in every 500,000 to 1 million births, but it could be more common, researchers say, because
babies who die of a simple infection often are not given an autopsy.

"Without an immune system, a patient is completely vulnerable to infection. A pathogen that
would be harmless to a person with normal immunity would destroy a SCID patient. Until 1982,
SCID was invariably fatal unless the patient had a brother or sister who was an exact match to donate
bone marrow," Buckley explained. "What we see now is that a sibling match isn't necessary;
haploidentical parental marrow will work, too." A haploid match is a half match.

But the key is timing, according to Buckley. The transplant needs to be done before the onset
of opportunistic infection, she explained, and in the first few weeks of the baby's life, when the donor
marrow takes hold quickest. Waiting until after the first four weeks of life increases the risk of
infection, as well as slowing the development of immunity from the donor transplant.

Buckley also found that transplants can be done without exposing the infant to toxic
chemotherapy, which can have life-long repercussions.

Many doctors give chemotherapy to all bone marrow transplant patients because they are
following standard cancer treatment protocol, Buckley said. But chemotherapy is not necessary in
children with SCID because they have no T-cells to attack and destroy the foreign donor marrow, as is the case with cancer patients.

"Patients with SCID have no immune systems to reject the transplants. Our approach avoids
toxic agents and their possible complications," she said.

Moreover, Buckley has found a way to reduce a potentially fatal complication of transplants
called graft-versus-host disease (GVHD). By removing the donor's T-cells before the transplant, the
donor's marrow cannot rise up and attack the patient's vital organs -- a common complication with
bone marrow transplants.

And, by removing these cells before the transplant, the infant avoids the toxic drugs normally
given to suppress the donor's T-cells.

Results from the study of 79 SCID patients who received bone marrow transplants at Duke
between May 1982 and January 1997 indicate that parents, as well as siblings of SCID-affected
babies, can be successful marrow donors. None of the patients received pre-transplant chemotherapy.
Overall, 78 percent of the patients have survived -- some are now teenagers -- including all 12
recipients who received identical marrow transplants. Seventy-four percent of the 67 haploidentical (or parent donor) marrow recipients survive.

Within the total group of 79 patients receiving marrow transplants, 18 babies were diagnosed
with SCID in utero or at birth because of a family history. Thirteen of those early-diagnosed babies
received marrow transplants from eight to 24 days after birth. Twelve of 13 -- 92 percent -- survive;
one is now 15. The other six received a transplant within three months and all survived.

The Duke researchers found no difference in eventual outcome between identical or half-match stem-cell transplants, leading them to support early diagnosis and neonatal transplant as key to curing SCID patients.

Newborn screenings can detect the genetic defect in SCID babies. With the mother available as
a marrow donor, the life-saving transplant can be done in the first few days of a baby's life. The
patient can receive treatment as an outpatient or with "observation admission" (23 hours in the

"This makes the treatment both easier on the mother and baby and cost-effective" said
Buckley. "What we're saying is that essentially every baby with SCID could be cured if diagnosed
early enough. SCID should be considered a pediatric emergency."

Buckley characterized the Duke researchers' approach as conservative when compared with
recent attempts to treat SCID in utero. Neonatal treatment bypasses the instrumentation risks
associated with pre-term treatment, she said.

Story Source:

The above story is based on materials provided by Johns Hopkins Children's Center. Note: Materials may be edited for content and length.

Cite This Page:

Johns Hopkins Children's Center. "Early Marrow Transplant May Cure SIDS." ScienceDaily. ScienceDaily, 4 June 1997. <www.sciencedaily.com/releases/1997/06/970604092843.htm>.
Johns Hopkins Children's Center. (1997, June 4). Early Marrow Transplant May Cure SIDS. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/1997/06/970604092843.htm
Johns Hopkins Children's Center. "Early Marrow Transplant May Cure SIDS." ScienceDaily. www.sciencedaily.com/releases/1997/06/970604092843.htm (accessed March 31, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins