Featured Research

from universities, journals, and other organizations

MGH Researchers Connect Alzheimer's Mutations To Cell-Death Process

Date:
July 18, 1997
Source:
Massachusetts General Hospital
Summary:
Researchers at the Massachusetts General Hospital have discovered that two genes associated with early-onset Alzheimer's disease are involved in programmed cell death. They also showed that an Alzheimer's-causing mutation in one genes increases the propensity of nerve cells to undergo the cell-death process called apoptosis.

Researchers at the Massachusetts General Hospital (MGH) have discovered that two genes associated with early-onset Alzheimer's disease are involved in programmed cell death, a natural process in which unneeded or worn-out cells commit suicide. They also showed that an Alzheimer's-causing mutation in one of these genes increases the propensity of nerve cells to undergo the cell-death process, which also is called apoptosis.

In the July 18 issue of Science, the scientists describe their studies of the protein products of two genes called presenilins. Rudolph Tanzi, PhD, director of the MGH Genetics and Aging Unit and leader of the study, explains that this work is the first to directly and clearly connect these Alzheimer's genes with apoptosis, which has long been suspected as a mechanism in several neurodegenerative diseases.

"Both presenilins now join a select group of proteins which help bring about cell death," Tanzi says. "In the brain, this process usually takes place during early growth, when extra neurons [brain cells] die to assure proper development. We hypothesize that in older individuals the cell-death pathway becomes reactivated in certain neurons, especially in regions affected by Alzheimer's. While mutations in these genes appear to speed up this process and cause early-onset Alzheimer's, environmental factors could set off the process in sporadic cases of the disease. This discovery creates an excellent target for new drug development."

Presenilin (PS)1, located on chromosome 14, and PS2, located on chromosome 1, both were discovered in 1995 by multi-institutional collaborations including members of the MGH research team. When mutated, PS1 (which also has been called S182 and STM-1) is believed to cause roughly 50 percent of inherited, early-onset Alzheimer's, while PS2 (also called STM-2) is associated with a much smaller proportion. Defects in both genes are directly causative; anyone who inherits a mutated form of the gene is destined to develop the disease, usually before age 65.

When apoptosis takes place, many of the proteins that make up a cell are clipped apart by certain enzymes called caspases. Although clipping proteins into smaller fragments is a normal part of cellular metabolism, apoptosis-associated clipping takes place at alternative locations along the protein strand, changing the molecular message carried by the protein and eventually leading to the cell's death. The new findings suggest that presenilin proteins are cell-death substrates -- proteins that are clipped by caspases to carry out the process of cell death.

To confirm the presenilin proteins' cell-death role, the MGH researchers analyzed the proteins produced by cultured neurons under normal conditions and after apoptosis was induced by substances that trigger the process. They identified the sites at which both presenilins were clipped in normal cellular proces sing by isolating the two fragments the original proteins were cut into. When cells undergo apoptosis, the researchers found, both presenilins are clipped in alternative loca tions, producing different protein fragments that contribute to the cell-death process.

The researchers then looked at cells carrying a PS2 mutation found in a number of families with early-onset Alzheimer's. When both normal cells and mutated cells were induced to make PS2, the mutated PS2 was three times more likely to be clipped in the location associated with the cell-death pathway than was the normal PS2.

The only other known effect of presenilin gene mutations is to increase production of amyloid-beta42 (A-beta42), a component of the characteristic plaques found in the brains of people with Alzheimer's, which is toxic to cells on its own. Tae-Wan Kim, PhD, the paper's first authors explains, "A question we need to answer now is how the participation of presenilin genes in the cell-death pathway, particularly the enhanced paticipation of mutant forms of the genes, relates to previous observations of increased A-beta42. We can see two possibilities: alternative clipping of the presenilins could set off several cell-death processes within the neurons, including production of A-beta42; or the alternative clipping could directly increase A-beta42 accumulation, which would be the actual trigger for cell death."

No matter which pathway turns out to be involved, Tanzi adds, development of drugs that interfere with the caspase-induced alternative clipping of presenilin proteins might delay or prevent the progression of Alzheimer's.

D. Stephen Snyder, PhD, program director for the Etiology of Alzheimer's Disease at the National Institute on Aging, says: "Alzheimer's research is like putting together a giant jigsaw puzzle. The results reported here, together with the other partially assembled sections we have before us, provide some very solid clues to help us understand the mechanism by which Alzheimer's develops. These insights will suggest new and, we hope, more effective means by which to thwart this devastating disease." The National Institute on Aging provided major support for this research. # # #


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "MGH Researchers Connect Alzheimer's Mutations To Cell-Death Process." ScienceDaily. ScienceDaily, 18 July 1997. <www.sciencedaily.com/releases/1997/07/970718110026.htm>.
Massachusetts General Hospital. (1997, July 18). MGH Researchers Connect Alzheimer's Mutations To Cell-Death Process. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1997/07/970718110026.htm
Massachusetts General Hospital. "MGH Researchers Connect Alzheimer's Mutations To Cell-Death Process." ScienceDaily. www.sciencedaily.com/releases/1997/07/970718110026.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins