Featured Research

from universities, journals, and other organizations

Known Tumor Suppressor Gene May Play A Role In Breast Cancer

July 22, 1997
University Of California, Santa Cruz
A gene linked to the most common abdominal cancer in children also may contribute to the development of breast cancer, according to a study at the University of California, Santa Cruz, and Oregon Health Sciences University.

July 22, 1997Contacts:Robert Irion, UC Santa Cruz: (408) 459-2495; irion@ua.ucsc.eduJulianne Remington, OHSU: (503) 494-8231; remingju@ohsu.edu

Related Articles



SANTA CRUZ, CA--A gene linked to the most common abdominal cancer in children also may contribute to the development of breast cancer, according to a study at the University of California, Santa Cruz, and Oregon Health Sciences University.

A team led by UC Santa Cruz biologist Gary Silberstein found evidence that a gene called WT1, which prevents abnormal cell division in the kidney, also is active in healthy breast tissues. However, the gene was silent, or nearly so, in two-thirds of the cancerous breast tissues examined by the team. These tissues included tumors in their earliest stages of growth--just a few cells beginning to run amok.

The study is the first to make a connection between breast cancer and WT1, so named because of its role in the childhood kidney cancer called Wilm's tumor. The team published its research today (July 22) in the Proceedings of the National Academy of Sciences.

"It is not inconceivable that the loss of WT1 function is an early event in the progression to breast cancer," said Silberstein, an associate research biologist at UCSC. "This really is a brand-new finding, a once-in-a-lifetime connection that should open new avenues of breast-cancer research."

Silberstein emphasized that the research will not lead to new medical or preventive treatments in the near future. However, by shedding light on the cellular machinations of diseased breasts, it may give researchers a new strategy as they attempt to devise "gene therapy" approaches to restore the normal functions of genes that stunt the growth of tumors.

Silberstein led the study in the laboratory of Charles Daniel, research professor of biology at UCSC. Other coauthors included Charles T. Roberts, Jr., professor of pediatrics at Oregon Health Sciences University and an expert on Wilm's tumor, and UCSC researchers Katharine Van Horn and Phyllis Strickland.

The scientists received samples of both healthy and diseased breast tissues via Daniel's ongoing collaboration with physicians at Dominican Santa Cruz Hospital, most notably pathologist Dr. Kelly O'Keefe and surgeon Dr. John Snyder. All tissues were obtained with the informed consent of patients. Other samples came from the University of Michigan's Breast Tissue Bank.

WT1, it appears, is among a chain of genes that helps govern the production of important hormones, called growth factors, in both the kidney and the breast. The growth factors are part of a fine-tuned hormonal system of checks and balances that controls the extent to which cells proliferate. WT1's key targets in the cell are hormones known as insulin-like growth factors (IGFs) and transforming growth factor beta (TGF-b). Research in the labs of Daniel and others has shown that both IGFs and TGF-b are crucial to regulating growth in mammary glands.

When WT1 does its job, it instructs the cell to churn out proteins that manage the amount of IGFs and TGF-b. "WT1 essentially is a middle-management gene," Silberstein said. "It's expressed in an exceedingly complex way--it's basically four genes in one. But there is a direct connection between WT1 and factors that control the growth of breast tissues."

The researchers examined normal tissues from the breasts of six patients who had undergone breast-reduction surgery at Dominican Hospital. The WT1 protein was present in cells from all of these patients, indicating that the gene was active and functioning properly.

Then, the team looked at tissues excised from 21 breast-cancer patients, ranging in age from 29 to 88 years. In 40 percent of all the tumors studied, the researchers could not detect the WT1 protein--the gene, for unknown reasons, had malfunctioned or fallen silent. In another 28 percent of the tumors, most of the cells lacked the WT1 protein.

"The story is complex, because it has been difficult to find a single molecular or genetic defect that is common to all the various forms of breast tumors," said Roberts, who directs the Doernbecher Pediatric Research Laboratories at OHSU. "Finding abnormal WT1 activity in several types of breast cancer suggests that defects in WT1 action may underlie many forms of breast cancer."

Curiously, the WTI gene was active in a highly malignant subset of advanced breast tumors, called estrogen receptor-negative tumors. However, the researchers also detected another well-known tumor suppressor gene, called p53, in these malignant cells. Those two genes can interact, so p53 may interfere with WT1's normal function.

There is no evidence of a mutation in the WT1 gene, Silberstein said, so WT1 would not be a factor in hereditary breast cancers. No relationship is yet evident between the WT1 gene and the previously discovered BRCA I and II genes, which play a role in hereditary forms of breast cancer. Those cases comprise 5 to 10 percent of all breast cancers.

Silberstein, Daniel, and their UCSC colleagues are completing a study of the developmental regulation of WT1 in the mammary glands of mice. Early results support the findings from human tissues: the gene's products are absent in precancerous tissues but present in more mature tumors.

The research was supported by grants from the National Institutes of Health to the laboratories of both Daniel and Roberts.


Editor's notes: You may reach the principal researchers as follows:Gary Silberstein: (408) 459-4428 or silberstein@biology.ucsc.eduCharles Roberts: (503) 494-4307 or robertsc@ohsu.eduCharles Daniel: (408) 459-4171 or daniel@darwin.ucsc.edu

Story Source:

The above story is based on materials provided by University Of California, Santa Cruz. Note: Materials may be edited for content and length.

Cite This Page:

University Of California, Santa Cruz. "Known Tumor Suppressor Gene May Play A Role In Breast Cancer." ScienceDaily. ScienceDaily, 22 July 1997. <www.sciencedaily.com/releases/1997/07/970722172957.htm>.
University Of California, Santa Cruz. (1997, July 22). Known Tumor Suppressor Gene May Play A Role In Breast Cancer. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/1997/07/970722172957.htm
University Of California, Santa Cruz. "Known Tumor Suppressor Gene May Play A Role In Breast Cancer." ScienceDaily. www.sciencedaily.com/releases/1997/07/970722172957.htm (accessed January 26, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins