Featured Research

from universities, journals, and other organizations

New Advance May Aid Alzheimer's: Early Study Shows Protein Shares Link With Disease And Reverses Memory Deficits In Mice

Date:
October 3, 1997
Source:
Society For Neuroscience
Summary:
For the first time, scientists have shown through genetic studies in adult mice that depletion of the protein nerve growth factor (NGF) causes a decline in learning and memory, mimicking a major characteristic of Alzheimer's disease.

WASHINGTON, D.C. October 1 - For the first time, scientists have shown through genetic studies in adult mice that depletion of the protein nerve growth factor (NGF) causes a decline in learning and memory, mimicking a major characteristic of Alzheimer's disease. An estimated 4 million Americans are affected by the degenerative ailment.

"We also have found that NGF can bring learning and memory back to normal levels in spite of the loss of about one-third of a population of cells that are important for learning and memory," says Heidi Phillips of Genentech, Inc. in San Francisco. "The finding is intriguing and adds encouragement for therapeutic approaches for Alzheimer's disease based on the principle of increasing the function of remaining brain cells." Her study is published in the October 1 issue of The Journal of Neuroscience.

"This is an important advance and brings us one step closer to clinical relevance," says Ira Black, an expert on NGF at Robert Wood Johnson Medical School in New Jersey. "For the first time it demonstrates that memory deficits in a genetic model possibly can be treated with prolonged infusion of NGF into the brain."

In the past, researchers suspected that NGF was important for the function and survival of a population of cells that are crucial for learning and memory - basal forebrain cholinergic neurons. "These cells undergo degeneration in Alzheimer1s disease and their loss is believed to contribute to the memory loss observed in the disease," says Phillips. In previous work, scientists found that the administration of NGF to injured basal forebrain cholinergic neurons could improve cognitive function in elderly rats. "Technical difficulties have been an obstacle to determine if NGF is necessary for normal brain function," says Phillips.

Phillips and her co-workers overcame this challenge with genetic techniques. In the research, they studied mice bred to carry one dysfunctional copy and one normal copy of the NGF gene. (For each inherited characteristic, an organism has two genes, one inherited from each parent). Mice that lack both copies of the gene do not live long enough to study. The mice Phillips studied have learning and memory losses similar to Alzheimer1s. "The mice bearing one dysfunctional NGF gene have reduced levels of NGF in the brain, show a loss of about one-third of their basal forebrain cholinergic neurons, and display a mild, but significant impairment of performance in a learning and memory task," says Phillips. "The remaining basal forebrain cholinergic neurons are shrunken in size, indicating that they are not functioning optimally." These results show that NGF is critical for the development, survival and function of this cell population.

"In the second step of the study, administering NGF not only reverses the cell shrinkage, but also completely reverses the learning and memory deficits in these mice," says Phillips.

The scientists are optimistic that these findings could lead to further research that may result in ways to successfully treat Alzheimer1s disease and other memory disorders. NGF is now being studied for the treatment of diseases that involve defects in another type of neuron. These neurons, known as sensory neurons, convey pain and temperature information. Currently, NGF is in human clinical trials for the treatment of diabetic peripheral neuropathy and HIV-related neuropathy.

Phillips' co-authors were Karen Chen, Merry Nishimura, Mark Armanini, Craig Crowley, and Susan Spencer, also of Genentech, Inc. Phillips, Chen, Nishimura, and Armanini are members of the Society for Neuroscience, an organization of more than 27,000 basic scientists and clinicians who study the brain and nervous system. The Journal of Neuroscience is published by the Society for Neuroscience.


Story Source:

The above story is based on materials provided by Society For Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society For Neuroscience. "New Advance May Aid Alzheimer's: Early Study Shows Protein Shares Link With Disease And Reverses Memory Deficits In Mice." ScienceDaily. ScienceDaily, 3 October 1997. <www.sciencedaily.com/releases/1997/10/971003062712.htm>.
Society For Neuroscience. (1997, October 3). New Advance May Aid Alzheimer's: Early Study Shows Protein Shares Link With Disease And Reverses Memory Deficits In Mice. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1997/10/971003062712.htm
Society For Neuroscience. "New Advance May Aid Alzheimer's: Early Study Shows Protein Shares Link With Disease And Reverses Memory Deficits In Mice." ScienceDaily. www.sciencedaily.com/releases/1997/10/971003062712.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins