Featured Research

from universities, journals, and other organizations

Researchers Successfully Regenerate Transplanted Nerve Axons In Adult Animals

Date:
December 19, 1997
Source:
Case Western Reserve University
Summary:
Neuroscientists from the Case Western Reserve University School of Medicine have shown that transplanted adult nerve cells can regenerate their axons in the adult rat brain's nerve fiber pathways, challenging long-held beliefs that this is impossible.

Findings, published in Nature, challenge long-held beliefs on adult nerve regeneration

Related Articles


CLEVELAND - Neuroscientists from the Case Western Reserve University School of Medicine have shown that transplanted adult nerve cells can regenerate their axons in the adult rat brain's nerve fiber pathways, challenging long-held beliefs that this is impossible.

In their study, researchers found that nerve cells regenerated remarkably well and at relatively high rates of speed in 34 of 41 animals. Their paper is published in the December 18-25 issue of the journal Nature.

It is widely accepted that the adult mammalian central nervous system will not permit regeneration of nerve cell processes, called axons. In addition to physical or molecular barriers presented by scarring at a lesion site (such as a spinal cord injury), normal adult nerve pathways, which are insulated with white matter called the myelin sheath, are thought to be impenetrable to nerve regeneration. A 10-year old theory holds that the myelin sheath contains a type of cell which prohibits nerve regeneration.

Lead author Stephen J. A. Davies, a CWRU research associate, and colleagues removed dorsal root ganglion neurons from adult donor animals and then used a unique microtransplantation system to transplant them into the brain's nerve pathways of other adult animals. They witnessed rapid growth (1 millimeter per day) and saw that 80 percent of the cells were able to extend axon processes all the way into the brain's gray matter where they branched off in new directions, acting like normal nerve cells.

"These results were totally unexpected. There is a huge potential for regeneration in the adult white matter tracks of the central nervous system, at least with the nerve cells that we've used so far," said Jerry Silver, Ph.D., professor of neurosciences at CWRU and senior author of the study. "There's not a minimal potential. It's enormous."

The scientists believe that their method of transplantation played a key role in their results. Davies, a research associate in Silver's lab, developed the method, which introduces the nerve cells with little or no trauma to them or the host brain. The minimization of scarring may be important because the researchers found scar tissue around the transplanted cells in the study's seven animals that did not regenerate nerve cells. Within the scar tissue, they found a type of inhibitory molecule called chondroitin sulphate proteoglycan.

"In the failed transplants," said Davies, "every single regrowing axon had either stopped within the proteoglycan rich boundary or had actively turned away from the boundary and looped back into the transplant interior."

Silver said, "It gives great hope that regeneration might be possible, if we can learn how to breach the immediate vicinity of the lesion by building a bridge across that zone or breaking down the inhibitory scar molecules, we may get regeneration beyond what we ever dreamed possible."

Other authors on the study are M.T. Fitch, S.P. Memberg, and A.K. Hall of the Department of Neurosciences at CWRU's School of Medicine; and G. Raisman of the Norma and Sadi Lee Research Centre in the National Institute for Medical Research's Division of Neurobiology in London. Davies is also affiliated with this research center.

The research is funded by the International Spinal Research Trust, David Heumann Fund, Brumagin Memorial Fund, and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Researchers Successfully Regenerate Transplanted Nerve Axons In Adult Animals." ScienceDaily. ScienceDaily, 19 December 1997. <www.sciencedaily.com/releases/1997/12/971219063213.htm>.
Case Western Reserve University. (1997, December 19). Researchers Successfully Regenerate Transplanted Nerve Axons In Adult Animals. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/1997/12/971219063213.htm
Case Western Reserve University. "Researchers Successfully Regenerate Transplanted Nerve Axons In Adult Animals." ScienceDaily. www.sciencedaily.com/releases/1997/12/971219063213.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins