Featured Research

from universities, journals, and other organizations

Scientists designing new anti-malaria compounds

Date:
February 12, 1998
Source:
Johns Hopkins University
Summary:
Chemists at Johns Hopkins University have developed new compounds that show promise in treating malaria by making the disease-causing parasite self-destruct.

Chemists have developed new compounds that show promise intreating malaria by making the disease-causing parasitesself-destruct.

A scientific paper about the compounds will appear in the March12 issue of the Journal of Medicinal Chemistry, published by theAmerican Chemical Society.

At any given time, about 300 million people suffer from malaria,and as many as 3 million of them, mostly children, will die everyyear. The most severe form of the infection is caused by tinyparasites called Plasmodium falciparum, which are transmitted byfemale mosquitos feeding on human blood.

The drug of choice to combat malaria has been chloroquine, aderivative of quinine, which comes from the bark of the Cinchonatree. But the malaria parasites began showing resistance tochloroquine nearly 40 years ago.

Chinese chemists have isolated a new anti-malarial drug from theplant Artemisia annua, which has been used for thousands of yearsas an herbal remedy for fever. The drug, called artemisinin, hassince been proven to be effective against malaria. Chemists havedeveloped derivatives of artemisinin, as well. But artemisininand its derivatives remain difficult and expensive to produce,and they quickly break down in the human body.

New synthetic compounds being developed at Johns Hopkins havebeen shown to kill malaria parasites in test tubes and inexperiments with mice. Although the synthetic compounds use thesame general mechanism as artemisinin, they are not derivativesof the drug; they are a new type of compound that has a muchsimpler structure. Because they are simpler, they can be made inonly three to five chemical steps, compared to 12 or more stepsfor the artemisinin derivatives.

The research is being conducted by a team of scientists led byGary H. Posner, Scowe Professor of Chemistry in The Johns HopkinsUniversity School of Arts and Sciences, Theresa A. Shapiro, apharmacologist and associate professor in the School of Medicine,graduate students Jared N. Cumming and Poonsakdi Ploypradith andtechnician Suji Xie.

Chemists have been able to make the new compounds by figuring outhow artemisinin kills the malaria parasites. The centralcomponent of the mechanism is a ring of atoms, present inartemisinin and the new compounds, that contains three oxygenatoms. The structure, called a trioxane, contains two oxygensthat are bound together, a combination called a peroxide.

The researchers found that iron from blood inside the malariaparasite provides electrons that rupture the bond between the twoadjacent oxygen atoms in the peroxide. The result is an oxygenfree radical -- an atom with an unpaired electron. The freeradical attracts a hydrogen atom, plucking it away from its bondwith a carbon atom and producing an electron-hungry carbon freeradical. Carbon radicals damage cells inside the parasite bystealing electrons and breaking molecular bonds, making the drugtoxic to the malaria parasite.

"The parasite initiates its own self-destruction inadvertently,"Posner said. "Based on that mechanistic understanding, we havedesigned a new series of trioxanes. We don't start withartemisinin and change its structure. Rather, we start fromscratch and design a series of trioxanes so that they are inaccord with our understanding, at the molecular level, of howthese compounds behave."

Some of the synthetic compounds were as effective as artemisinin.

"More important, perhaps, is the fact that they are active byoral administration so you can not only administer them byinjection, you can give them orally," Posner said.

For the most severe form of malaria, called cerebral malaria, theearly administration of medicine could be the difference betweenlife and death. That form of the disease can induce coma andfevers as high as 106 degrees Fahrenheit.

"A person cannot survive more than a few hours having cerebralmalaria," Posner said.

The next step will be to determine whether it is safe whenadministered in large doses. Preliminary safety results areencouraging, Posner said.

Malaria is a menace in regions stretching from Africa to theCaribbean islands, and from Central America to Asia and India.The disease is spread by a genus of mosquitos called Anopheles,which pick up the parasite when they bite an infected person. Theinsects then transmit infected blood to other people. Anophelesmosquitos are found in portions of the United States, wherereports of malaria have historically been rare since the 1930sbut where public health officials are increasingly concerned.

The research is being funded by the National Institutes of Healthand the Burroughs Wellcome Fund.

(The scientific paper is available on-line at the following Webaddress: http://pubs.acs.org/hotartcl/jmcmar/jmcmar.html).

Another paper about the synthesis of similar antimalarialcompounds will be published in March 1998 in Tetrahedron Letters,an international science journal published in the United Kingdom. ###


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Scientists designing new anti-malaria compounds." ScienceDaily. ScienceDaily, 12 February 1998. <www.sciencedaily.com/releases/1998/02/980212170359.htm>.
Johns Hopkins University. (1998, February 12). Scientists designing new anti-malaria compounds. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/1998/02/980212170359.htm
Johns Hopkins University. "Scientists designing new anti-malaria compounds." ScienceDaily. www.sciencedaily.com/releases/1998/02/980212170359.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins