Featured Research

from universities, journals, and other organizations

Transplanted Neurons Restore Function In Rats After Stroke

Date:
February 27, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
Transplants of human neurons derived from a tumor restored the movement and behavioral function of rats subjected to experimental stroke in a joint study by researchers at the University of South Florida College of Medicine and the University of Pennsylvania Medical Center.

Transplants of human neurons derived from a tumor restored the movement and behavioral function of rats subjected to experimental stroke in a joint study by researchers at the University of South Florida College of Medicine and the University of Pennsylvania Medical Center. The new findings are reported in the just-published February issue of the journal Experimental Neurology.

Related Articles


The neurons originated in an embryonal cancer cell line that was treated with retinoic acid in a process to differentiate the cells and to render them benign.

Significantly, when the human neuronal cells were frozen and then thawed prior to transplantation, they proved equally as effective as fresh cells in easing the symptoms of stroke in rats. Furthermore, the tumor-derived cells did not revert to abnormal tissue growth after transplantation into the brains of rats.

"This suggests that human neuronal cell transplantation may be a useful alternative to fetal tissue in treating strokes and other neurodegenerative disorders," says Paul R. Sanberg, PhD, professor and director of neurosurgical research at USF and senior author on the study. "The grafts' resistance to the effects of cryopreservation is rather remarkable. Frozen fetal brain cells do not survive long after they are thawed."

Experimental transplantation using fetal brain cells has been successful in a small number of patients with Parkinson's disease, but the potential for widespread use of fetal tissue is limited, partly because of difficulties associated with preservation.

"The clinical potential is that a readily available supply of cryopreserved human neuronal cells, made under controlled conditions and stored frozen, could be used as replacement therapy to reverse the deficits of stroke," notes Virginia M.-Y. Lee, PhD, a professor of pathology and laboratory medicine at Penn and a coauthor on the study.

Lee and Penn colleague John Q. Trojanowski, MD, PhD, also a professor of pathology and laboratory medicine and study coauthor, developed a procedure to isolate and purify the NT2N neurons from a culture of mixed cells removed from a cancerous human tumor. Treatment with retinoic acid altered the cells so that they became noncancerous and differentiated to take on the characteristics of neurons.

The process has been patented by the University of Pennsylvania Medical Center and licensed to Layton BioScience Inc. of Atherton, California, which provided the cells used in the USF study. Layton BioScience is developing the cells, known commercially as hNT-Neurons, for the treatment of several neurological disorders.

In the experiments, the USF researchers implanted the hNT-Neurons into the brains of rats. In rats receiving immunosuppressive drugs to control graft rejection, function was restored and maintained for more than six months following transplantation.

"The hNT-Neurons were just as beneficial as fetal brain cells alone in improving movement and behavioral recovery," observes Sanberg.

The University of South Florida Health Sciences Center has graduated 2,000 doctors, 3,300 nurses, and 1,000 public health professionals. In 1996-1997, 350 faculty-physicians in the College of Medicine handled 470,000 patient visits, HSC sponsored research topped $50 million, and USF physicians provided $20 million worth of uncompensated care.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Transplanted Neurons Restore Function In Rats After Stroke." ScienceDaily. ScienceDaily, 27 February 1998. <www.sciencedaily.com/releases/1998/02/980227054838.htm>.
University Of Pennsylvania Medical Center. (1998, February 27). Transplanted Neurons Restore Function In Rats After Stroke. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/1998/02/980227054838.htm
University Of Pennsylvania Medical Center. "Transplanted Neurons Restore Function In Rats After Stroke." ScienceDaily. www.sciencedaily.com/releases/1998/02/980227054838.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins