Featured Research

from universities, journals, and other organizations

Transplanted Neurons Restore Function In Rats After Stroke

Date:
February 27, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
Transplants of human neurons derived from a tumor restored the movement and behavioral function of rats subjected to experimental stroke in a joint study by researchers at the University of South Florida College of Medicine and the University of Pennsylvania Medical Center.

Transplants of human neurons derived from a tumor restored the movement and behavioral function of rats subjected to experimental stroke in a joint study by researchers at the University of South Florida College of Medicine and the University of Pennsylvania Medical Center. The new findings are reported in the just-published February issue of the journal Experimental Neurology.

Related Articles


The neurons originated in an embryonal cancer cell line that was treated with retinoic acid in a process to differentiate the cells and to render them benign.

Significantly, when the human neuronal cells were frozen and then thawed prior to transplantation, they proved equally as effective as fresh cells in easing the symptoms of stroke in rats. Furthermore, the tumor-derived cells did not revert to abnormal tissue growth after transplantation into the brains of rats.

"This suggests that human neuronal cell transplantation may be a useful alternative to fetal tissue in treating strokes and other neurodegenerative disorders," says Paul R. Sanberg, PhD, professor and director of neurosurgical research at USF and senior author on the study. "The grafts' resistance to the effects of cryopreservation is rather remarkable. Frozen fetal brain cells do not survive long after they are thawed."

Experimental transplantation using fetal brain cells has been successful in a small number of patients with Parkinson's disease, but the potential for widespread use of fetal tissue is limited, partly because of difficulties associated with preservation.

"The clinical potential is that a readily available supply of cryopreserved human neuronal cells, made under controlled conditions and stored frozen, could be used as replacement therapy to reverse the deficits of stroke," notes Virginia M.-Y. Lee, PhD, a professor of pathology and laboratory medicine at Penn and a coauthor on the study.

Lee and Penn colleague John Q. Trojanowski, MD, PhD, also a professor of pathology and laboratory medicine and study coauthor, developed a procedure to isolate and purify the NT2N neurons from a culture of mixed cells removed from a cancerous human tumor. Treatment with retinoic acid altered the cells so that they became noncancerous and differentiated to take on the characteristics of neurons.

The process has been patented by the University of Pennsylvania Medical Center and licensed to Layton BioScience Inc. of Atherton, California, which provided the cells used in the USF study. Layton BioScience is developing the cells, known commercially as hNT-Neurons, for the treatment of several neurological disorders.

In the experiments, the USF researchers implanted the hNT-Neurons into the brains of rats. In rats receiving immunosuppressive drugs to control graft rejection, function was restored and maintained for more than six months following transplantation.

"The hNT-Neurons were just as beneficial as fetal brain cells alone in improving movement and behavioral recovery," observes Sanberg.

The University of South Florida Health Sciences Center has graduated 2,000 doctors, 3,300 nurses, and 1,000 public health professionals. In 1996-1997, 350 faculty-physicians in the College of Medicine handled 470,000 patient visits, HSC sponsored research topped $50 million, and USF physicians provided $20 million worth of uncompensated care.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Transplanted Neurons Restore Function In Rats After Stroke." ScienceDaily. ScienceDaily, 27 February 1998. <www.sciencedaily.com/releases/1998/02/980227054838.htm>.
University Of Pennsylvania Medical Center. (1998, February 27). Transplanted Neurons Restore Function In Rats After Stroke. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1998/02/980227054838.htm
University Of Pennsylvania Medical Center. "Transplanted Neurons Restore Function In Rats After Stroke." ScienceDaily. www.sciencedaily.com/releases/1998/02/980227054838.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins