Featured Research

from universities, journals, and other organizations

Area Of Research Outlined For Promising New Cancer Drugs

Date:
May 13, 1998
Source:
University Of Notre Dame
Summary:
The effects of angiostatin and endostatin on mechanisms regulating angiongenesis in other processes besides tumor growth is one area of research that requires additional study, according to noted University of Notre Dame blood chemist Francis J. Castellino.

The effects of angiostatin and endostatin on mechanisms regulating angiongenesis in other processes besides tumor growth is one area of research that requires additional study, according to noted University of Notre Dame blood chemist Francis J. Castellino.

Related Articles


Basic research conducted in Castellino's laboratory contributed to the identification of angiostatin, one of the promising new cancer drugs being heralded nationally this week. Angiostatin and endostatin are being given top priority by the National Cancer Institute and will be rushed to clinical trial in humans.

Castellino is very excited about the drugs' possibilities but cautions that more studies involving the basic science of these drugs are needed. Research now under way in Castellino's laboratories will attempt to address some of these issues.

Castellino, whose laboratory is without question one of the top handful studying blood clotting mechanisms, is Kleiderer-Pezold professor of biochemistry, dean of Notre Dame's College of Science, and director of the Center for Transgene Research and the Walther Cancer Center, which are also at the University. It was his antibody to plasminogen, a precurser of the clot-dissolving enzyme plasmin -- as well as a number of basic studies on plasminogen fragments -- that helped confirm angiostatin is a fragment of this protein. (Endostatin is derived from a different, unrelated protein, collagen XVIII.)

Angiostatin and endostatin were discovered in the laboratory of Dr. Judah Folkman, a cancer researcher at Children's Hospital in Boston. The drugs function by cutting off the blood supply to tumors, making even extremely large tumors disappear. In mice, the drugs appear to stop malignant tumor growth and spreading, but they have not yet been tested in humans, and the medical community remains cautious.

Both angiostatin and endostatin evidently interfere with the tumors' ability to synthesize new capillaries from pre-existing blood vessels, a process called angiogenesis. Essentially, the tumors were starved when the drugs were administered to cancer-bearing mice.

Normally, only limited angiogenesis takes place in organisms after fetal development. Apart from pathological situations, such as cancer, angiogenesis is needed for events such as embryogenesis, wound repair, and successful skin grafts. "It's important to remember that cancer patients are sick," he explains. "There are other pathologies besides tumors. Many such patients experience difficulties with clotting, bleeding, and vascular damage, for example, and may require some level of neovascularization.

"We have to be careful not to elevate expectations to unreasonable levels prior to the results of clinical trials. However, on the other side, the potential beauty of these drugs is that they may only be required for short-term treatment, and that many of these other issues will be manageable."

A collaborative project between scientists at the Cleveland Clinic, the Notre Dame Center for Transgene Research, and the Walther Cancer Center will study genetically manipulated mice with deletions of angiostatin's parent protein, plasminogen. Results from this in vivo research are expected to yield greater understanding of the angiostatin-plasminogen relationship in cancer, Castellino says.

For more information, contact Frances J. Castellino, Kleiderer-Pezold professor of biochemistry and dean of the College of Science, at (219) 631-6456 or Elliot D. Rosen, research associate professor and associate director of the Transgene Research Center, at (219) 631-9365. Castellino's research is funded by the National Institutes of Health and the American Heart Association. He also has received funding from EntreMed, the Rockland, Md., biotech company that was formed to make and market angiostatin and endostatin, and from the Walther Institute of Indianapolis.


Story Source:

The above story is based on materials provided by University Of Notre Dame. Note: Materials may be edited for content and length.


Cite This Page:

University Of Notre Dame. "Area Of Research Outlined For Promising New Cancer Drugs." ScienceDaily. ScienceDaily, 13 May 1998. <www.sciencedaily.com/releases/1998/05/980513080147.htm>.
University Of Notre Dame. (1998, May 13). Area Of Research Outlined For Promising New Cancer Drugs. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/1998/05/980513080147.htm
University Of Notre Dame. "Area Of Research Outlined For Promising New Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/1998/05/980513080147.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins