Featured Research

from universities, journals, and other organizations

Area Of Research Outlined For Promising New Cancer Drugs

Date:
May 13, 1998
Source:
University Of Notre Dame
Summary:
The effects of angiostatin and endostatin on mechanisms regulating angiongenesis in other processes besides tumor growth is one area of research that requires additional study, according to noted University of Notre Dame blood chemist Francis J. Castellino.

The effects of angiostatin and endostatin on mechanisms regulating angiongenesis in other processes besides tumor growth is one area of research that requires additional study, according to noted University of Notre Dame blood chemist Francis J. Castellino.

Basic research conducted in Castellino's laboratory contributed to the identification of angiostatin, one of the promising new cancer drugs being heralded nationally this week. Angiostatin and endostatin are being given top priority by the National Cancer Institute and will be rushed to clinical trial in humans.

Castellino is very excited about the drugs' possibilities but cautions that more studies involving the basic science of these drugs are needed. Research now under way in Castellino's laboratories will attempt to address some of these issues.

Castellino, whose laboratory is without question one of the top handful studying blood clotting mechanisms, is Kleiderer-Pezold professor of biochemistry, dean of Notre Dame's College of Science, and director of the Center for Transgene Research and the Walther Cancer Center, which are also at the University. It was his antibody to plasminogen, a precurser of the clot-dissolving enzyme plasmin -- as well as a number of basic studies on plasminogen fragments -- that helped confirm angiostatin is a fragment of this protein. (Endostatin is derived from a different, unrelated protein, collagen XVIII.)

Angiostatin and endostatin were discovered in the laboratory of Dr. Judah Folkman, a cancer researcher at Children's Hospital in Boston. The drugs function by cutting off the blood supply to tumors, making even extremely large tumors disappear. In mice, the drugs appear to stop malignant tumor growth and spreading, but they have not yet been tested in humans, and the medical community remains cautious.

Both angiostatin and endostatin evidently interfere with the tumors' ability to synthesize new capillaries from pre-existing blood vessels, a process called angiogenesis. Essentially, the tumors were starved when the drugs were administered to cancer-bearing mice.

Normally, only limited angiogenesis takes place in organisms after fetal development. Apart from pathological situations, such as cancer, angiogenesis is needed for events such as embryogenesis, wound repair, and successful skin grafts. "It's important to remember that cancer patients are sick," he explains. "There are other pathologies besides tumors. Many such patients experience difficulties with clotting, bleeding, and vascular damage, for example, and may require some level of neovascularization.

"We have to be careful not to elevate expectations to unreasonable levels prior to the results of clinical trials. However, on the other side, the potential beauty of these drugs is that they may only be required for short-term treatment, and that many of these other issues will be manageable."

A collaborative project between scientists at the Cleveland Clinic, the Notre Dame Center for Transgene Research, and the Walther Cancer Center will study genetically manipulated mice with deletions of angiostatin's parent protein, plasminogen. Results from this in vivo research are expected to yield greater understanding of the angiostatin-plasminogen relationship in cancer, Castellino says.

For more information, contact Frances J. Castellino, Kleiderer-Pezold professor of biochemistry and dean of the College of Science, at (219) 631-6456 or Elliot D. Rosen, research associate professor and associate director of the Transgene Research Center, at (219) 631-9365. Castellino's research is funded by the National Institutes of Health and the American Heart Association. He also has received funding from EntreMed, the Rockland, Md., biotech company that was formed to make and market angiostatin and endostatin, and from the Walther Institute of Indianapolis.


Story Source:

The above story is based on materials provided by University Of Notre Dame. Note: Materials may be edited for content and length.


Cite This Page:

University Of Notre Dame. "Area Of Research Outlined For Promising New Cancer Drugs." ScienceDaily. ScienceDaily, 13 May 1998. <www.sciencedaily.com/releases/1998/05/980513080147.htm>.
University Of Notre Dame. (1998, May 13). Area Of Research Outlined For Promising New Cancer Drugs. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1998/05/980513080147.htm
University Of Notre Dame. "Area Of Research Outlined For Promising New Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/1998/05/980513080147.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins