Featured Research

from universities, journals, and other organizations

Scientists Develop New Computer Program To Speed Determination Of Gene Function

Date:
June 29, 1998
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
A computer program recently developed at UT Southwestern Medical Center at Dallas has found the markers on all DNA sequenced so far in the international Human Genome Project, and the list is now available on the Internet.

DALLAS, Texas, June 23, 1998 -- A computer program recently developed at UT Southwestern Medical Center at Dallas has found the markers on all DNA sequenced so far in the international Human Genome Project, and the list is now available on the Internet.

A UT Southwestern study, which developed and validated the computer code known as POMPOUS, is described in today's issue of Proceedings of the National Academy of Sciences. Markers are small bits of deoxyribonucleic acid (DNA) that can vary among individuals but are usually inherited within related groups. Differences in markers are called polymorphisms, and they can alter how a gene affects the body. The markers are used in identifying diseases, predicting risk of disease and in forensics investigations.

"Because of all the information coming out of the genome project, there needs to be more and more effort in computational biology to extract value from the raw DNA sequences and relate it to the function of the 100,000 or so genes and all the medical implications of the variations in each gene," said senior author Dr. Harold "Skip" Garner, associate director of UT Southwestern's federally funded Genome Science and Technology Center and holder of the Philip O'Bryan Montgomery Jr., M.D., Distinguished Chair in Developmental Biology. "Our system facilitates the step between genomic sequencing and using the data to discover the impact of genes on the quality of life."

In a collaborative effort with Dr. John Minna -- director of the Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and the W.A. "Tex" and Deborah Moncrief Jr. Center for Cancer Genetics and holder of the Max L. Thomas Distinguished Chair in Molecular Pulmonary Oncology, the Sarah M. and Charles E. Seay Distinguished Chair in Cancer Research and the Lisa K. Simmons Distinguished Chair in Comprehensive Oncology -- the researchers applied POMPOUS (polymorphic marker prediction of ubiquitous simple sequences) to a 750,000 base pair region on human chromosome 3P. Minna used this section of DNA to study small-cell lung carcinoma, one of the deadliest forms of cancer.

"We ran the code on this region, identified about 40 markers and tested them," said Garner, co-director of the Biomedical Inventions Center. "Then Dr. Minna used the markers that the computer predicted in his research. It accelerated his ability to analyze and identify the genes and the properties of the sequence region."

In the verification process the computer accurately predicted the markers 67 percent of the time. Garner said this development significantly enhances the discovery of gene function. In addition it costs only about $20 to $40 to find a marker using this method.

"Using a parallel supercomputer on loan from Hewlett-Packard, we have pre-calculated the markers in all the genes that have been sequenced thus far so we have a list of 13,000 to 14,0000 markers on our Web site; we basically are giving them away to the world," he said. "We also put a server on the Web site so that anyone can submit their own sequence, and the code will predict the marker and hand them back oligonucleotide sequences ( bits of DNA used to identify genes) pre-designed for the laboratory technician to test the sequence in the lab."

Other UT Southwestern researchers involved in the study were cell and molecular biology graduate student John Fondon; Hamon Center research assistant Gina Mele; Hamon Center postdoctoral fellow Dr. Ruth Brezinschek; a UT Southwestern Science Teachers' Access to Resources at Southwestern (STARS) researcher Donna Cummings; Eugene McDermott Center for Human Growth and Development graduate student Jonathan Wren; surgery student research assistant Ashwini Pande; McDermott Center postdoctoral fellow Dr. Kevin O'Brien; and McDermott Center senior research scientist, Kenneth Kupfer. Drs. Ming-Hui Wei and Michael Lerman of the Laboratory of Immunobiology at the National Cancer Center in Frederick, Md., were also part of the study group.

The research was supported by grants from the Whitaker Foundation, the National Cancer Institute, Specialized Program of Research Excellence (SPORE) in Lung Cancer, Texas ARP (Advanced Research Projects) and the G. Harold and Leila T. Mathers Charitable Foundation.

The list of markers is available at http://POMPOUS.swmed.edu/.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Scientists Develop New Computer Program To Speed Determination Of Gene Function." ScienceDaily. ScienceDaily, 29 June 1998. <www.sciencedaily.com/releases/1998/06/980629073221.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1998, June 29). Scientists Develop New Computer Program To Speed Determination Of Gene Function. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1998/06/980629073221.htm
University Of Texas Southwestern Medical Center At Dallas. "Scientists Develop New Computer Program To Speed Determination Of Gene Function." ScienceDaily. www.sciencedaily.com/releases/1998/06/980629073221.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins