Featured Research

from universities, journals, and other organizations

Process Creates Ceramics That Won’t Shrink Or Change Shape

Date:
August 6, 1998
Source:
Ohio State University
Summary:
Researchers at Ohio State University have developed a new technique for creating near net-shaped ceramic parts for high-tech devices like fuel cells, medical implants, cellular phones, gas or temperature sensors, and even automobile engines.

COLUMBUS, Ohio -- Researchers at Ohio State University have developed a new technique for creating near net-shaped ceramic parts for high-tech devices like fuel cells, medical implants, cellular phones, gas or temperature sensors, and even automobile engines.

Related Articles


Manufacturers of expensive, complex-shaped ceramic components must fire freshly-molded parts at high temperatures in order to obtain a ceramic body that is free of pores. This pore-filling process, called sintering, shrinks the parts. Sometimes the ceramic part shrinks nonuniformly, which causes it to deform and develop cracks.

“Most people won’t notice if cups and saucers vary a few millimeters from their ideal proportions, but the ceramics used in a number of advanced devices won’t work well unless they conform to exactly the right size and shape,” said Ken Sandhage, associate professor of materials science and engineering.

Sandhage and his graduate students have come up with asolution, which they described in a recent issue of the Journal of Materials Research. Instead of starting the manufacturing process with just ceramic powder, they start with a precursor that consists of a mixture of ceramic and metal powders.

Upon firing in air or oxygen, the metal powders oxidize and become ceramics. Two types of metals are used: one type expands upon oxidation, whereas the other type contracts. By mixing the proper amounts of both types of metals, the researchers produce a final all-ceramic part that retains it’s original shape and dimensions.

This avoids the distortion and cracking of conventional ceramics processing, so manufacturers who use this process would produce fewer defective parts, generate less waste, and save money.

Most metals expand upon oxidation, so a ceramic mixture containing only these metals would swell and crack during firing. Alkaline earth metals, however -- such as magnesium, calcium, strontium, and barium -- are unique because they shrink when oxidized.

“We figured that if we started with a precursor that contained some alkaline earth metals, which shrink, and some non-alkaline earth metals, which expand, then we could tailor the composition so that the net volume change when we fired the mixture would be zero,” said Sandhage.

The researchers mix alkaline earth metal, non-alkaline metal, and ceramic powders in a device that resembles a paint mixer at a hardware store. The material sloshes around at high speeds, and emerges as a thoroughly-mixed, malleable powder that is easy to compact and form into complicated shapes.

“It’s like putting M&M’sŪ into ice cream, where the M&M’sŪ are the ceramic powder and the soft ice cream is the metal,” said Sandhage.

The compacted and shaped parts remain the same size and shape after firing. Because the material contains malleable metal and not just brittle ceramic, the researchers can shape it with metallurgical techniques like rolling, forging, extrusion, and machining. In laboratory experiments, the researchers were able to roll a sheet of such a precursor that measured only 20 micrometers thick -- about five times thinner than a human hair.

The metals in the precursor provide other benefits. Because they bind the ceramic powder together, they eliminate the need for traditional organic binding materials such as carbon. Manufacturers normally burn these organic materials from the final ceramic, which releases hydrocarbons into the atmosphere and leaves pores in the material.

Also, the lack of organic material in the precursor means that the process can produce certain ceramic compounds at lower temperatures, which saves energy. The researchers have produced ceramic compounds at temperatures as low as 300šC, well below half the temperature normally required.

One of Sandhage’s graduate students developed a way to speed up the method by dispersing sources of oxygen within the shaped precursor so that the metal would oxidize faster. This reaction works at higher temperatures, on the order of 900šC, but is capable of producing larger ceramic parts in a relatively short time -- a few hours.

Sandhage and his students have also used such processing to fabricate shaped ceramic composites -- another mixture of ceramic and metal. For these materials, some of the metal in the precursor is left unoxidized. For some applications, such residual metal can enhance the electrical conductivity, thermal conductivity, or toughness of the part.

The idea of oxidizing precursors containing alkaline earth metals to produce near net-shaped ceramic parts is a simple one, and Sandhage said he’s surprised that nobody thought of it before.

“For years, some of my colleagues have studied high-temperature oxidation of metals for the purpose of stopping it, because it was considered to be a corrosion process,” he said. “We’re doing the opposite -- intentionally oxidizing metals to make ceramics.” The researchers have received several patents on this process and filed several more patent applications.

Manufacturers may use this process to produce radomes -- covers that protect sensitive electronic devices while allowing certain wavelengths of radiation to pass through. Such a cover would protect the sensors located in missile or aircraft noses. The process has also produced ceramic microwave resonators -- devices that amplify signals at particular frequencies, such as those in cellular phones.

Other ceramics that have been produced by this process conduct hydrogen ions in fuel cells or act as permanent magnets for speakers, motors, and portable electronic appliances. One calcium-based ceramic that Sandhage and his students have produced is the major component of teeth and bones, and so is suitable for medical implants.

In sodium vapor lamps -- the lights often found along highways -- transparent ceramic acts as a containment vessel. Ceramic components for automobile engines are lighter and more wear-resistant than their metal counterparts, and can perform better at high temperatures. Sandhage said these are both possible applications for ceramics made with this new process.

Sandhage and his students are currently working to develop ceramic gas sensors and heat-resistant components for rocket nozzles.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Process Creates Ceramics That Won’t Shrink Or Change Shape." ScienceDaily. ScienceDaily, 6 August 1998. <www.sciencedaily.com/releases/1998/08/980806085338.htm>.
Ohio State University. (1998, August 6). Process Creates Ceramics That Won’t Shrink Or Change Shape. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/1998/08/980806085338.htm
Ohio State University. "Process Creates Ceramics That Won’t Shrink Or Change Shape." ScienceDaily. www.sciencedaily.com/releases/1998/08/980806085338.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins