Featured Research

from universities, journals, and other organizations

Researchers Develop Animal Model Of Human Colorectal Cancer

Date:
September 18, 1998
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
The development of the first animal model for colorectal cancer by scientists at UT Southwestern Medical Center at Dallas will facilitate research into the molecular mechanisms of colorectal cancer and provide a model system for testing chemoprevention agents and new drug treatments.

DALLAS - September 18, 1998 - The development of the first animal model for colorectal cancer by scientists at UT Southwestern Medical Center at Dallas will facilitate research into the molecular mechanisms of colorectal cancer and provide a model system for testing chemoprevention agents and new drug treatments.

One in every 20 Americans will get colorectal cancer, the second-leading cause of cancer deaths. The collaborative work of Drs. Jon Graff, Luis Parada and colleagues, published in today's issue of Cell, could dramatically change that prospect. Initially the researchers will use their colon cancer mouse model, which mimics the human disease in many aspects, to look at ways of preventing cancer.

"The real strength of the model is that we can use the power of modern molecular biology to alter the genetic background and look at colorectal cancer in a very specific and fundamental way," said Graff, assistant professor in UT Southwestern's Center for Developmental Biology. "We want to do pharmacological and genetic manipulations with the idea that we can use the two as a synergistic approach to really get to the basis of prevention."

The investigators were able to induce colon cancer in all of the tested mice by altering a single gene, Smad3, which belongs to a gene family known to be involved in conveying signals from the cell's surface to the cell's nucleus. Smad genes also have been characterized as tumor- suppressor genes.

"My student, Yuan Zhu, chose to look at the Smad3 gene because of previous work by Dr. Graff and because the Smad gene family conveys signals from type II transforming growth factor - (TGF b [beta]). TGF b [beta] mutations are seen in some types of hereditary and sporadic colon cancer," said Dr. Luis Parada, director of the Center for Developmental Biology, holder of the Diana K. and Richard C. Strauss Chair in Developmental Biology and director of the Kent Waldrep Foundation Center for Basic Neuroscience. "In mice, previous research had indicated that alterations in other genes of the Smad family did not lead to colon cancer."

The scientists genetically inactivated the Smad3 gene to produce mice with no Smad3 gene function. They showed conclusively that the normal Smad3 gene functions as a powerful suppressor of colorectal cancer. With this cancer suppressor inactivated, mice spontaneously developed multistage colorectal cancer that had many parallels to the human disease including metastasis to lymph nodes.

As of today, no Smad3 mutations have been found in human cases of colorectal cancer. But Graff believes that since Smad2 and Smad3 are almost identical in structure, the role of Smad3 in the mouse may be analogous to the human Smad2, which has been found in a mutated state in a subset of human colorectal cancers.

"For me the joy would be to help patients and ultimately to cure this illness," Graff said.

Other UT Southwestern scientists participating in this project were first author Yuan Zhu, a doctoral student in the Center for Developmental Biology, and Dr. James Richardson, associate professor of pathology.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Develop Animal Model Of Human Colorectal Cancer." ScienceDaily. ScienceDaily, 18 September 1998. <www.sciencedaily.com/releases/1998/09/980918070755.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1998, September 18). Researchers Develop Animal Model Of Human Colorectal Cancer. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1998/09/980918070755.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Develop Animal Model Of Human Colorectal Cancer." ScienceDaily. www.sciencedaily.com/releases/1998/09/980918070755.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins