Featured Research

from universities, journals, and other organizations

Scientists Induce A Form Of Leukemia In Mice, Gaining An Unprecedented Glimpse Into The Disorder's Roots

Date:
November 17, 1998
Source:
Brandeis University
Summary:
In a finding that promises to expand greatly the scope of leukemia research, scientists at Brandeis University have induced a form of the disease in mice that's strikingly similar to chronic myelogenous leukemia (CML), which affects humans.

WALTHAM, Mass. -- In a finding that promises to expand greatly the scope of leukemia research, scientists at Brandeis University have induced a form of the disease in mice that's strikingly similar to chronic myelogenous leukemia (CML), which affects humans. The development gives researchers their best opportunity yet to probe CML's molecular origins, tracing it from a simple mutation involving two genes into a disease that accounts for fully one-fifth of all leukemia patients.

Related Articles


Ruibao Ren, assistant professor of biology in Brandeis' Rosenstiel Basic Medical Sciences Research Center, and Xiaowu Zhang, a graduate student in biochemistry, have accomplished what a host of leukemia researchers have been striving toward for years: essentially using gene therapy in reverse, they incorporated a leukemia-inducing gene into a mouse's genome with the help of a retrovirus. The work, sponsored by the National Cancer Institute and the American Cancer Society, appears in the Nov. 15 issue of the journal "Blood"; a second group from the University of Pennsylvania reports similar findings in the same issue.

Scientists understand the basics of how CML arises: in a single marrow cell, the genes bcr and abl, usually found on separate chromosomes, brush up against each other and fuse into a new gene called bcr-abl. This entity is a known oncogene, a genetic precursor to cancer. How the disease mushrooms from this isolated genetic flaw in just one of the body's trillion cells into a widespread cancer of the body's white blood cells remains a mystery, though.

"Owing to their medical importance, CML's molecular mechanisms have long been the subject of intense study," Ren says. "But there's a lot we have yet to learn about the pathways by which it and other leukemias arise."

For a decade, scientists' primary avenues of CML research have been the study of tumor cells removed from CML patients and the study of inserted oncogenes' effects on animal cells growing in petri dishes. However, these approaches can't do justice to the complexity of a disease that eventually affects blood cells throughout the body. With the development of the first effective and efficient animal models of CML, Ren's group has succeeded in laying the genetic bedrock for the disease -- meaning they can now observe the disorder's progress from its earliest stages, looking for the weak link in the process that might be vulnerable to drugs.

A number of other scientists have taken approaches more similar to Ren's over the last decade, splicing leukemia genes into the mouse genome. But these previous attempts worked very slowly when they worked at all; often months or even years elapsed between the insertion of a gene and the development of leukemia in a mouse, hobbling research projects. For as-yet unknown reasons, Ren's tactic works much more efficiently and predictably.

After preliminary work with the mouse model, Ren suspects the bcr-abl oncogene may induce leukemia by spurring production of growth factors that cancerous cells need in order to survive. He's now examining whether strains of mice that are genetically incapable of producing these growth factors remain healthy even in the presence of an inserted bcr-abl oncogene.

"Since cancerous cells need certain growth factors, it's possible that targeting them may hold the key to controlling CML," Ren says. "We probably won't be able to prevent the disease from arising, but we may be able to use these growth factors to nip it in the bud."

The only treatments now available for leukemia are bone marrow transplants and chemotherapy, neither of which are viable options for many sicker patients. Through their studies with mice, Ren and his colleagues hope to identify potential new leukemia therapies.


Story Source:

The above story is based on materials provided by Brandeis University. Note: Materials may be edited for content and length.


Cite This Page:

Brandeis University. "Scientists Induce A Form Of Leukemia In Mice, Gaining An Unprecedented Glimpse Into The Disorder's Roots." ScienceDaily. ScienceDaily, 17 November 1998. <www.sciencedaily.com/releases/1998/11/981117080225.htm>.
Brandeis University. (1998, November 17). Scientists Induce A Form Of Leukemia In Mice, Gaining An Unprecedented Glimpse Into The Disorder's Roots. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/1998/11/981117080225.htm
Brandeis University. "Scientists Induce A Form Of Leukemia In Mice, Gaining An Unprecedented Glimpse Into The Disorder's Roots." ScienceDaily. www.sciencedaily.com/releases/1998/11/981117080225.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins