Featured Research

from universities, journals, and other organizations

Alcohol Consumption, Resistance To Its Effects Related To Levels Of Neurotransmitter, Say UW Researchers

Date:
November 30, 1998
Source:
University Of Washington
Summary:
Science is still a long way from understanding why some people are more prone to alcoholism and alcohol abuse than others, but University of Washington researchers have discovered that concentrations of a neurotransmitter in the brains of mice are directly related to alcohol consumption and resistance to the sedative effects of alcohol.

Science is still a long way from understanding why some people are more prone to alcoholism and alcohol abuse than others, but University of Washington researchers have discovered that concentrations of a neurotransmitter in the brains of mice are directly related to alcohol consumption and resistance to the sedative effects of alcohol.

Writing in tomorrow's issue of the journal Nature, the UW scientists report that genetically altered mice that do not produce the naturally occurring brain chemical or neurotransmitter called neuropeptide Y (NPY) drank significantly more alcohol and were less affected by its sedative, or sleep-inducing, effects than normal mice. In addition, genetically engineered mice that produce abnormally high levels of NPY drank less alcohol than normal mice and were highly prone to succumb to its sedative effects.

"This is the first direct demonstration that there are altered levels of alcohol consumption if you change the amount of NPY present in the brains of rodents," said Todd Thiele, who headed the UW team along with Richard Palmiter. "Alcohol consumption and resistance are inversely proportional to concentrations of NPY in the brain. Together, these data indicate that in rodents there is a relationship between NPY levels and the willingness to voluntarily consume alcohol."

The researchers cautioned that while their results with mice are convincing, further research is necessary to determine if there is a relationship between NPY and alcohol consumption and abuse in humans. They next plan to try to find the mechanism by which NPY in the brain modulates alcohol drinking.

"This study is important for two reasons," according to Dr. Enoch Gordis, director of the National Institute on Alcohol Abuse and Alcoholism. "It indicates that peptides related to appetite and anxiety are significant areas for study in alcohol research and that drugs designed to interact with components of the neuropeptide Y signaling system may someday be useful in helping individuals control their alcohol consumption."

To measure the effects of NYP levels on alcohol consumption in mice, the UW scientists set up a regimen in which mice were individually housed and given food plus water in two bottles. Next water in one of the bottles was replaced with ethanol solutions in increasingly stronger concentrations of 3, 6, 10 and 20 percent. The animals were given each ethanol solution for eight days and their alcohol consumption was monitored. The 3 percent alcohol solution is roughly equivalent to a beer while the 20 percent solution is about half as powerful as a shot of whiskey.

Thiele also noted that the sedative effects of alcohol on the two genetically altered strains of mice were strikingly different. While the mice with no NPY drank significantly more alcohol than normal mice, they woke up more quickly from alcohol-induced sleep than the animals with standard levels of the neurotransmitter. The case was just the opposite with mice with high brain levels of NPY. Even though they drank significantly less alcohol, they took a lot longer to wake up after drinking ethanol than normal mice.

Thiele is a research scientist in the psychology department at the UW and Palmiter is a professor of biochemistry and an investigator with the Howard Hughes Medical Institute. Other members of the research team are Donald Marsh, a post-doctoral researcher in Palmiter's laboratory; Ilene Bernstein, professor of psychology; and Linda Ste. Marie, a doctoral candidate in biochemistry. The research was funded by the National Institute on Alcohol Abuse and Alcoholism and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Alcohol Consumption, Resistance To Its Effects Related To Levels Of Neurotransmitter, Say UW Researchers." ScienceDaily. ScienceDaily, 30 November 1998. <www.sciencedaily.com/releases/1998/11/981130050043.htm>.
University Of Washington. (1998, November 30). Alcohol Consumption, Resistance To Its Effects Related To Levels Of Neurotransmitter, Say UW Researchers. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1998/11/981130050043.htm
University Of Washington. "Alcohol Consumption, Resistance To Its Effects Related To Levels Of Neurotransmitter, Say UW Researchers." ScienceDaily. www.sciencedaily.com/releases/1998/11/981130050043.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins