Featured Research

from universities, journals, and other organizations

Genetic Combination That Steers Newborn Nerve Cells Identified By Salk Scientists

Date:
January 13, 1999
Source:
The Salk Institute For Biological Studies
Summary:
Like a sextant that helps guide ships at sea, a specific combination of genes has been identified that directs newly born nerve cells to their final destinations in developing organisms. Embryonic nerves must pick their pathways in a specific and ordered manner, and investigators led by John Thomas, an associate professor at The Salk Institute for Biological Studies, have deciphered the first combinatorial code that spells out one of these pathways.

LA JOLLA, CALIF. January 6, 1999 -- Like a sextant that helps guide ships at sea, a specific combination of genes has been identified that directs newly born nerve cells to their final destinations in developing organisms.

Related Articles


Embryonic nerves must pick their pathways in a specific and ordered manner, and investigators led by John Thomas, an associate professor at The Salk Institute for Biological Studies, have deciphered the first combinatorial code that spells out one of these pathways.

The results, published in the January 7 issue of the journal Nature, "provide a clear demonstration that a specific combination of genes determines the pathways along which developing nerve cells will grow," said Thomas, senior author of the study, adding that neuroscientists long suspected such a code might exist but "direct evidence was lacking."

The scientists examined two sets of nerve cells that grow from the central nervous system outward to abdominal muscles in the fruit fly Drosophila. Once there, these cells, called motor neurons, form connections that will allow them to control movements in the mature animal.

One class of neurons, known as ISNb cells, innervate a specific subset of muscles; the other, ISNd neurons, grow toward a different set of muscles. By switching the expression of a single gene, the Salk team was able to switch the growth pattern and identity of these neurons.

Both ISNb and ISNd motor neurons express a gene called islet, but a similar gene called lim3 is active only in ISNb neurons. When Thomas and his colleagues forced lim3 to turn on in ISNd cells, the neurons abandoned their normal track and instead grew toward the muscles normally targeted by ISNb cells. Conversely, when the investigators blocked lim3, the ISNb cells behaved like ISNd neurons, and when both islet and lim3 are eliminated, the cells became totally confused and never reach the abdominal area.

"It appears that a host of genes determines that a cell will be first a nerve cell, second a motor neuron, and third a particular type of motor neuron in terms of which muscles it will grow toward," said Thomas.

"Lim3 and islet constitute a code that instructs nerve cells to travel to specific destinations."

Identifying the genes that guide neurons to their targets is critical to nerve regeneration efforts that scientists hope will eventually be used to treat neurodegenerative diseases, including Alzheimer's, paralysis due to spinal cord injury and congenital conditions such as blindness and mental retardation. And because islet and lim3 have analogs in vertebrate organisms that appear to be active in similar patterns to those seen in flies, the investigators believe their work will help pave the way to understanding how nerve growth is regulated in higher organisms.

"Clearly, we're still a long way from being able to reconstitute a nervous system or even part of one," said Thomas. "But knowing how cells get where they're supposed to be is a key piece of the puzzle."

First author of the study is Stefan Thor, currently at Harvard Medical School and formerly a postdoctoral fellow in Thomas's laboratory. The study was done in collaboration with Siv G. E. Andersson and Andrew Tomlinson at the College of Physicians and Surgeons of Columbia University. The work was supported by the National Institutes of Health, a Pew Scholars Award to Thomas, an EMBO Long-term Fellowship to Andersson and a HFSP Long-term Fellowship to Thor.

The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit institution dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The Institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.


Story Source:

The above story is based on materials provided by The Salk Institute For Biological Studies. Note: Materials may be edited for content and length.


Cite This Page:

The Salk Institute For Biological Studies. "Genetic Combination That Steers Newborn Nerve Cells Identified By Salk Scientists." ScienceDaily. ScienceDaily, 13 January 1999. <www.sciencedaily.com/releases/1999/01/990113075724.htm>.
The Salk Institute For Biological Studies. (1999, January 13). Genetic Combination That Steers Newborn Nerve Cells Identified By Salk Scientists. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/1999/01/990113075724.htm
The Salk Institute For Biological Studies. "Genetic Combination That Steers Newborn Nerve Cells Identified By Salk Scientists." ScienceDaily. www.sciencedaily.com/releases/1999/01/990113075724.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins